40
Views
15
CrossRef citations to date
0
Altmetric
Article

The Histone Variant MacroH2A1 Regulates Target Gene Expression in Part by Recruiting the Transcriptional Coregulator PELP1

, , , , , , , & show all
Pages 2437-2449 | Received 01 Oct 2013, Accepted 09 Apr 2014, Published online: 20 Mar 2023

REFERENCES

  • Turner BM. 2012. The adjustable nucleosome: an epigenetic signaling module. Trends Genet. 28:436–444. http://dx.doi.org/10.1016/j.tig.2012.04.003.
  • Volle C, Dalal Y. 2014. Histone variants: the tricksters of the chromatin world. Curr. Opin. Genet. Dev. 25C:8–14. http://dx.doi.org/10.1016/j.gde.2013.11.006.
  • Costanzi C, Pehrson JR. 1998. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393:599–601. http://dx.doi.org/10.1038/31275.
  • Mietton F, Sengupta AK, Molla A, Picchi G, Barral S, Heliot L, Grange T, Wutz A, Dimitrov S. 2009. Weak but uniform enrichment of the histone variant macroH2A1 along the inactive X chromosome. Mol. Cell. Biol. 29:150–156. http://dx.doi.org/10.1128/MCB.00997-08.
  • Ladurner AG. 2003. Inactivating chromosomes: a macro domain that minimizes transcription. Mol. Cell 12:1–3. http://dx.doi.org/10.1016/S1097-2765(03)00284-3.
  • Changolkar LN, Costanzi C, Leu NA, Chen D, McLaughlin KJ, Pehrson JR. 2007. Developmental changes in histone macroH2A1-mediated gene regulation. Mol. Cell. Biol. 27:2758–2764. http://dx.doi.org/10.1128/MCB.02334-06.
  • Csankovszki G, Panning B, Bates B, Pehrson JR, Jaenisch R. 1999. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nat. Genet. 22:323–324. http://dx.doi.org/10.1038/11887.
  • Rasmussen TP, Wutz AP, Pehrson JR, Jaenisch RR. 2001. Expression of Xist RNA is sufficient to initiate macrochromatin body formation. Chromosoma 110:411–420. http://dx.doi.org/10.1007/s004120100158.
  • Wutz A, Rasmussen TP, Jaenisch R. 2002. Chromosomal silencing and localization are mediated by different domains of Xist RNA. Nat. Genet. 30:167–174. http://dx.doi.org/10.1038/ng820.
  • Dardenne E, Pierredon S, Driouch K, Gratadou L, Lacroix-Triki M, Espinoza MP, Zonta E, Germann S, Mortada H, Villemin JP, Dutertre M, Lidereau R, Vagner S, Auboeuf D. 2012. Splicing switch of an epigenetic regulator by RNA helicases promotes tumor-cell invasiveness. Nat. Struct. Mol. Biol. 19:1139–1146. http://dx.doi.org/10.1038/nsmb.2390.
  • Kapoor A, Goldberg MS, Cumberland LK, Ratnakumar K, Segura MF, Emanuel PO, Menendez S, Vardabasso C, Leroy G, Vidal CI, Polsky D, Osman I, Garcia BA, Hernando E, Bernstein E. 2010. The histone variant macroH2A suppresses melanoma progression through regulation of CDK8. Nature 468:1105–1109. http://dx.doi.org/10.1038/nature09590.
  • Novikov L, Park JW, Chen H, Klerman H, Jalloh AS, Gamble MJ. 2011. QKI-mediated alternative splicing of the histone variant MacroH2A1 regulates cancer cell proliferation. Mol. Cell. Biol. 31:4244–4255. http://dx.doi.org/10.1128/MCB.05244-11.
  • Sporn JC, Jung B. 2012. Differential regulation and predictive potential of MacroH2A1 isoforms in colon cancer. Am. J. Pathol. 180:2516–2526. http://dx.doi.org/10.1016/j.ajpath.2012.02.027.
  • Sporn JC, Kustatscher G, Hothorn T, Collado M, Serrano M, Muley T, Schnabel P, Ladurner AG. 2009. Histone macroH2A isoforms predict the risk of lung cancer recurrence. Oncogene 28:3423–3428. http://dx.doi.org/10.1038/onc.2009.26.
  • Barrero MJ, Sese B, Kuebler B, Bilic J, Boue S, Marti M, Izpisua Belmonte JC. 2013. Macrohistone variants preserve cell identity by preventing the gain of H3K4me2 during reprogramming to pluripotency. Cell Rep. 3:1005–1011. http://dx.doi.org/10.1016/j.celrep.2013.02.029.
  • Barrero MJ, Sese B, Marti M, Izpisua Belmonte JC. 2013. Macro histone variants are critical for the differentiation of human pluripotent cells. J. Biol. Chem. 288:16110–16116. http://dx.doi.org/10.1074/jbc.M113.466144.
  • Creppe C, Janich P, Cantarino N, Noguera M, Valero V, Musulen E, Douet J, Posavec M, Martin-Caballero J, Sumoy L, Di Croce L, Benitah SA, Buschbeck M. 2012. MacroH2A1 regulates the balance between self-renewal and differentiation commitment in embryonic and adult stem cells. Mol. Cell. Biol. 32:1442–1452. http://dx.doi.org/10.1128/MCB.06323-11.
  • Gaspar-Maia A, Qadeer ZA, Hasson D, Ratnakumar K, Leu NA, Leroy G, Liu S, Costanzi C, Valle-Garcia D, Schaniel C, Lemischka I, Garcia B, Pehrson JR, Bernstein E. 2013. MacroH2A histone variants act as a barrier upon reprogramming towards pluripotency. Nat. Commun. 4:1565. http://dx.doi.org/10.1038/ncomms2582.
  • Pasque V, Radzisheuskaya A, Gillich A, Halley-Stott RP, Panamarova M, Zernicka-Goetz M, Surani MA, Silva JC. 2012. Histone variant macroH2A marks embryonic differentiation in vivo and acts as an epigenetic barrier to induced pluripotency. J. Cell Sci. 125:6094–6104. http://dx.doi.org/10.1242/jcs.113019.
  • Pasque V, Gillich A, Garrett N, Gurdon JB. 2011. Histone variant macroH2A confers resistance to nuclear reprogramming. EMBO J. 30:2373–2387. http://dx.doi.org/10.1038/emboj.2011.144.
  • Buschbeck M, Uribesalgo I, Wibowo I, Rue P, Martin D, Gutierrez A, Morey L, Guigo R, Lopez-Schier H, Di Croce L. 2009. The histone variant macroH2A is an epigenetic regulator of key developmental genes. Nat. Struct. Mol. Biol. 16:1074–1079. http://dx.doi.org/10.1038/nsmb.1665.
  • Gamble MJ, Frizzell KM, Yang C, Krishnakumar R, Kraus WL. 2010. The histone variant macroH2A1 marks repressed autosomal chromatin, but protects a subset of its target genes from silencing. Genes Dev. 24:21–32. http://dx.doi.org/10.1101/gad.1876110.
  • Agelopoulos M, Thanos D. 2006. Epigenetic determination of a cell-specific gene expression program by ATF-2 and the histone variant macroH2A. EMBO J. 25:4843–4853. http://dx.doi.org/10.1038/sj.emboj.7601364.
  • Changolkar LN, Singh G, Pehrson JR. 2008. macroH2A1-dependent silencing of endogenous murine leukemia viruses. Mol. Cell. Biol. 28:2059–2065. http://dx.doi.org/10.1128/MCB.01362-07.
  • Gamble MJ, Kraus WL. 2010. Multiple facets of the unique histone variant macroH2A. Cell Cycle 9:2568–2574. http://dx.doi.org/10.4161/cc.9.13.12144.
  • Pehrson JR, Fuji RN. 1998. Evolutionary conservation of histone macroH2A subtypes and domains. Nucleic Acids Res. 26:2837–2842. http://dx.doi.org/10.1093/nar/26.12.2837.
  • Chakravarthy S, Gundimella SK, Caron C, Perche PY, Pehrson JR, Khochbin S, Luger K. 2005. Structural characterization of the histone variant macroH2A. Mol. Cell. Biol. 25:7616–7624. http://dx.doi.org/10.1128/MCB.25.17.7616-7624.2005.
  • Hernandez-Munoz I, Lund AH, van der Stoop P, Boutsma E, Muijrers I, Verhoeven E, Nusinow DA, Panning B, Marahrens Y, van Lohuizen M. 2005. Stable X chromosome inactivation involves the PRC1 Polycomb complex and requires histone MACROH2A1 and the CULLIN3/SPOP ubiquitin E3 ligase. Proc. Natl. Acad. Sci. U. S. A. 102:7635–7640. http://dx.doi.org/10.1073/pnas.0408918102.
  • Nusinow DA, Hernandez-Munoz I, Fazzio TG, Shah GM, Kraus WL, Panning B. 2007. Poly(ADP-ribose) polymerase 1 is inhibited by a histone H2A variant, MacroH2A, and contributes to silencing of the inactive X chromosome. J. Biol. Chem. 282:12851–12859. http://dx.doi.org/10.1074/jbc.M610502200.
  • Ouararhni K, Hadj-Slimane R, Ait-Si-Ali S, Robin P, Mietton F, Harel-Bellan A, Dimitrov S, Hamiche A. 2006. The histone variant mH2A1.1 interferes with transcription by down-regulating PARP-1 enzymatic activity. Genes Dev. 20:3324–3336. http://dx.doi.org/10.1101/gad.396106.
  • Ratnakumar K, Duarte LF, LeRoy G, Hasson D, Smeets D, Vardabasso C, Bonisch C, Zeng T, Xiang B, Zhang DY, Li H, Wang X, Hake SB, Schermelleh L, Garcia BA, Bernstein E. 2012. ATRX-mediated chromatin association of histone variant macroH2A1 regulates alpha-globin expression. Genes Dev. 26:433–438. http://dx.doi.org/10.1101/gad.179416.111.
  • Timinszky G, Till S, Hassa PO, Hothorn M, Kustatscher G, Nijmeijer B, Colombelli J, Altmeyer M, Stelzer EH, Scheffzek K, Hottiger MO, Ladurner AG. 2009. A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation. Nat. Struct. Mol. Biol. 16:923–929. http://dx.doi.org/10.1038/nsmb.1664.
  • Gamble MJ. 2013. Expanding the functional repertoire of macrodomains. Nat. Struct. Mol. Biol. 20:407–408. http://dx.doi.org/10.1038/nsmb.2552.
  • Ahel D, Horejsi Z, Wiechens N, Polo SE, Garcia-Wilson E, Ahel I, Flynn H, Skehel M, West SC, Jackson SP, Owen-Hughes T, Boulton SJ. 2009. Poly(ADP-ribose)-dependent regulation of DNA repair by the chromatin remodeling enzyme ALC1. Science 325:1240–1243. http://dx.doi.org/10.1126/science.1177321.
  • Gottschalk AJ, Timinszky G, Kong SE, Jin J, Cai Y, Swanson SK, Washburn MP, Florens L, Ladurner AG, Conaway JW, Conaway RC. 2009. Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler. Proc. Natl. Acad. Sci. U. S. A. 106:13770–13774. http://dx.doi.org/10.1073/pnas.0906920106.
  • Karras GI, Kustatscher G, Buhecha HR, Allen MD, Pugieux C, Sait F, Bycroft M, Ladurner AG. 2005. The macro domain is an ADP-ribose binding module. EMBO J. 24:1911–1920. http://dx.doi.org/10.1038/sj.emboj.7600664.
  • Kraus WL. 2009. New functions for an ancient domain. Nat. Struct. Mol. Biol. 16:904–907. http://dx.doi.org/10.1038/nsmb0909-904.
  • Kustatscher G, Hothorn M, Pugieux C, Scheffzek K, Ladurner AG. 2005. Splicing regulates NAD metabolite binding to histone macroH2A. Nat. Struct. Mol. Biol. 12:624–625. http://dx.doi.org/10.1038/nsmb956.
  • Cheskis BJ, Greger J, Cooch N, McNally C, McLarney S, Lam HS, Rutledge S, Mekonnen B, Hauze D, Nagpal S, Freedman LP. 2008. MNAR plays an important role in ERa activation of Src/MAPK and PI3K/Akt signaling pathways. Steroids 73:901–905. http://dx.doi.org/10.1016/j.steroids.2007.12.028.
  • Vadlamudi RK, Wang RA, Mazumdar A, Kim Y, Shin J, Sahin A, Kumar R. 2001. Molecular cloning and characterization of PELP1, a novel human coregulator of estrogen receptor alpha. J. Biol. Chem. 276:38272–38279. http://dx.doi.org/10.1074/jbc.M103783200.
  • Choi YB, Ko JK, Shin J. 2004. The transcriptional corepressor, PELP1, recruits HDAC2 and masks histones using two separate domains. J. Biol. Chem. 279:50930–50941. http://dx.doi.org/10.1074/jbc.M406831200.
  • Khan MM, Hadman M, De Sevilla LM, Mahesh VB, Buccafusco J, Hill WD, Brann DW. 2006. Cloning, distribution, and colocalization of MNAR/PELP1 with glucocorticoid receptors in primate and nonprimate brain. Neuroendocrinology 84:317–329. http://dx.doi.org/10.1159/000097746.
  • Nair SS, Guo Z, Mueller JM, Koochekpour S, Qiu Y, Tekmal RR, Schule R, Kung HJ, Kumar R, Vadlamudi RK. 2007. Proline-, glutamic acid-, and leucine-rich protein-1/modulator of nongenomic activity of estrogen receptor enhances androgen receptor functions through LIM-only coactivator, four-and-a-half LIM-only protein 2. Mol. Endocrinol. 21:613–624. http://dx.doi.org/10.1210/me.2006-0269.
  • Nair SS, Mishra SK, Yang Z, Balasenthil S, Kumar R, Vadlamudi RK. 2004. Potential role of a novel transcriptional coactivator PELP1 in histone H1 displacement in cancer cells. Cancer Res. 64:6416–6423. http://dx.doi.org/10.1158/0008-5472.CAN-04-1786.
  • Nair SS, Nair BC, Cortez V, Chakravarty D, Metzger E, Schule R, Brann DW, Tekmal RR, Vadlamudi RK. 2010. PELP1 is a reader of histone H3 methylation that facilitates oestrogen receptor-alpha target gene activation by regulating lysine demethylase 1 specificity. EMBO Rep. 11:438–444. http://dx.doi.org/10.1038/embor.2010.62.
  • Frizzell KM, Gamble MJ, Berrocal JG, Zhang T, Krishnakumar R, Cen Y, Sauve AA, Kraus WL. 2009. Global analysis of transcriptional regulation by poly(ADP-ribose) polymerase-1 and poly(ADP-ribose) glycohydrolase in MCF-7 human breast cancer cells. J. Biol. Chem. 284:33926–33938. http://dx.doi.org/10.1074/jbc.M109.023879.
  • Kim MY, Mauro S, Gevry N, Lis JT, Kraus WL. 2004. NAD+-dependent modulation of chromatin structure and transcription by nucleosome binding properties of PARP-1. Cell 119:803–814. http://dx.doi.org/10.1016/j.cell.2004.11.002.
  • Erdjument-Bromage H, Lui M, Lacomis L, Grewal A, Annan RS, McNulty DE, Carr SA, Tempst P. 1998. Examination of micro-tip reversed-phase liquid chromatographic extraction of peptide pools for mass spectrometric analysis. J. Chromatogr. A 826:167–181. http://dx.doi.org/10.1016/S0021-9673(98)00705-5.
  • Sebastiaan Winkler G, Lacomis L, Philip J, Erdjument-Bromage H, Svejstrup JQ, Tempst P. 2002. Isolation and mass spectrometry of transcription factor complexes. Methods 26:260–269. http://dx.doi.org/10.1016/S1046-2023(02)00030-0.
  • van de Wetering M, Oving I, Muncan V, Pon Fong MT, Brantjes H, van Leenen D, Holstege FC, Brummelkamp TR, Agami R, Clevers H. 2003. Specific inhibition of gene expression using a stably integrated, inducible small-interfering-RNA vector. EMBO Rep. 4:609–615. http://dx.doi.org/10.1038/sj.embor.embor865.
  • Dimple C, Nair SS, Rajhans R, Pitcheswara PR, Liu J, Balasenthil S, Le XF, Burow ME, Auersperg N, Tekmal RR, Broaddus RR, Vadlamudi RK. 2008. Role of PELP1/MNAR signaling in ovarian tumorigenesis. Cancer Res. 68:4902–4909. http://dx.doi.org/10.1158/0008-5472.CAN-07-5698.
  • Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. 2004. Rational siRNA design for RNA interference. Nat. Biotechnol. 22:326–330. http://dx.doi.org/10.1038/nbt936.
  • Krishnakumar R, Gamble MJ, Frizzell KM, Berrocal JG, Kininis M, Kraus WL. 2008. Reciprocal binding of PARP-1 and histone H1 at promoters specifies transcriptional outcomes. Science 319:819–821. http://dx.doi.org/10.1126/science.1149250.
  • Changolkar LN, Pehrson JR. 2002. Reconstitution of nucleosomes with histone macroH2A1.2. Biochemistry 41:179–184. http://dx.doi.org/10.1021/bi0157417.
  • Brann DW, Zhang QG, Wang RM, Mahesh VB, Vadlamudi RK. 2008. PELP1—a novel estrogen receptor-interacting protein. Mol. Cell. Endocrinol. 290:2–7. http://dx.doi.org/10.1016/j.mce.2008.04.019.
  • Manavathi B, Nair SS, Wang RA, Kumar R, Vadlamudi RK. 2005. Proline-, glutamic acid-, and leucine-rich protein-1 is essential in growth factor regulation of signal transducers and activators of transcription 3 activation. Cancer Res. 65:5571–5577. http://dx.doi.org/10.1158/0008-5472.CAN-04-4664.
  • Rosendorff A, Sakakibara S, Lu S, Kieff E, Xuan Y, DiBacco A, Shi Y, Shi Y, Gill G. 2006. NXP-2 association with SUMO-2 depends on lysines required for transcriptional repression. Proc. Natl. Acad. Sci. U. S. A. 103:5308–5313. http://dx.doi.org/10.1073/pnas.0601066103.
  • Singh RR, Gururaj AE, Vadlamudi RK, Kumar R. 2006. 9-cis-retinoic acid up-regulates expression of transcriptional coregulator PELP1, a novel coactivator of the retinoid X receptor alpha pathway. J. Biol. Chem. 281:15394–15404. http://dx.doi.org/10.1074/jbc.M601593200.
  • ENCODE Project Consortium. 2004. The ENCODE (ENCyclopedia Of DNA Elements) project. Science 306:636–640. http://dx.doi.org/10.1126/science.1105136.
  • Kininis M, Chen BS, Diehl AG, Isaacs GD, Zhang T, Siepel AC, Clark AG, Kraus WL. 2007. Genomic analyses of transcription factor binding, histone acetylation, and gene expression reveal mechanistically distinct classes of estrogen-regulated promoters. Mol. Cell. Biol. 27:5090–5104. http://dx.doi.org/10.1128/MCB.00083-07.
  • Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J, Allis CD, Chait BT, Hess JL, Roeder RG. 2005. Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 121:873–885. http://dx.doi.org/10.1016/j.cell.2005.04.031.
  • Kashiwaya K, Nakagawa H, Hosokawa M, Mochizuki Y, Ueda K, Piao L, Chung S, Hamamoto R, Eguchi H, Ohigashi H, Ishikawa O, Janke C, Shinomura Y, Nakamura Y. 2010. Involvement of the tubulin tyrosine ligase-like family member 4 polyglutamylase in PELP1 polyglutamylation and chromatin remodeling in pancreatic cancer cells. Cancer Res. 70:4024–4033. http://dx.doi.org/10.1158/0008-5472.CAN-09-4444.
  • Andersen JS, Lyon CE, Fox AH, Leung AK, Lam YW, Steen H, Mann M, Lamond AI. 2002. Directed proteomic analysis of the human nucleolus. Curr. Biol. 12:1–11. http://dx.doi.org/10.1016/S0960-9822(01)00650-9.
  • Fu Z, Fenselau C. 2005. Proteomic evidence for roles for nucleolin and poly[ADP-ribosyl] transferase in drug resistance. J. Proteome Res. 4:1583–1591. http://dx.doi.org/10.1021/pr0501158.
  • Isabelle M, Moreel X, Gagne JP, Rouleau M, Ethier C, Gagne P, Hendzel MJ, Poirier GG. 2010. Investigation of PARP-1, PARP-2, and PARG interactomes by affinity-purification mass spectrometry. Proteome Sci. 8:22. http://dx.doi.org/10.1186/1477-5956-8-22.
  • Meder VS, Boeglin M, de Murcia G, Schreiber V. 2005. PARP-1 and PARP-2 interact with nucleophosmin/B23 and accumulate in transcriptionally active nucleoli. J. Cell Sci. 118:211–222. http://dx.doi.org/10.1242/jcs.01606.
  • Gonugunta VK, Nair BC, Rajhans R, Sareddy GR, Nair SS, Vadlamudi RK. 2011. Regulation of rDNA transcription by proto-oncogene PELP1. PLoS One 6:e21095. http://dx.doi.org/10.1371/journal.pone.0021095.
  • Finkbeiner E, Haindl M, Raman N, Muller S. 2011. SUMO routes ribosome maturation. Nucleus 2:527–532. http://dx.doi.org/10.4161/nucl.2.6.17604.
  • Cong R, Das S, Douet J, Wong J, Buschbeck M, Mongelard F, Bouvet P. 2014. macroH2A1 histone variant represses rDNA transcription. Nucleic Acids Res. 42:181–192. http://dx.doi.org/10.1093/nar/gkt863.
  • Banck MS, Li S, Nishio H, Wang C, Beutler AS, Walsh MJ. 2009. The ZNF217 oncogene is a candidate organizer of repressive histone modifiers. Epigenetics 4:100–106. http://dx.doi.org/10.4161/epi.4.2.7953.
  • Reid G, Gallais R, Metivier R. 2009. Marking time: the dynamic role of chromatin and covalent modification in transcription. Int. J. Biochem. Cell Biol. 41:155–163. http://dx.doi.org/10.1016/j.biocel.2008.08.028.
  • Choo JH, Kim JD, Kim J. 2007. MacroH2A1 knockdown effects on the Peg3 imprinted domain. BMC Genomics 8:479. http://dx.doi.org/10.1186/1471-2164-8-479.
  • Kayahara M, Ohanian J, Ohanian V, Berry A, Vadlamudi R, Ray DW. 2008. MNAR functionally interacts with both NH2- and COOH-terminal GR domains to modulate transactivation. Am. J. Physiol. Endocrinol. Metab. 295:E1047–E1055. http://dx.doi.org/10.1152/ajpendo.90429.2008.
  • Abbott DW, Chadwick BP, Thambirajah AA, Ausio J. 2005. Beyond the Xi: macroH2A chromatin distribution and post-translational modification in an avian system. J. Biol. Chem. 280:16437–16445. http://dx.doi.org/10.1074/jbc.M500170200.
  • Bernstein E, Muratore-Schroeder TL, Diaz RL, Chow JC, Changolkar LN, Shabanowitz J, Heard E, Pehrson JR, Hunt DF, Allis CD. 2008. A phosphorylated subpopulation of the histone variant macroH2A1 is excluded from the inactive X chromosome and enriched during mitosis. Proc. Natl. Acad. Sci. U. S. A. 105:1533–1538. http://dx.doi.org/10.1073/pnas.0711632105.
  • Chu F, Nusinow DA, Chalkley RJ, Plath K, Panning B, Burlingame AL. 2006. Mapping post-translational modifications of the histone variant MacroH2A1 using tandem mass spectrometry. Mol. Cell. Proteomics 5:194–203. http://dx.doi.org/10.1074/mcp.M500285-MCP200.
  • Nagpal JK, Nair S, Chakravarty D, Rajhans R, Pothana S, Brann DW, Tekmal RR, Vadlamudi RK. 2008. Growth factor regulation of estrogen receptor coregulator PELP1 functions via protein kinase A pathway. Mol. Cancer Res. 6:851–861. http://dx.doi.org/10.1158/1541-7786.MCR-07-2030.
  • Thambirajah AA, Li A, Ishibashi T, Ausio J. 2009. New developments in post-translational modifications and functions of histone H2A variants. Biochem. Cell Biol. 87:7–17. http://dx.doi.org/10.1139/O08-103.
  • Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G. 2004. GO::TermFinder–open source software for accessing Gene Ontology information and finding significantly enriched Gene Ontology terms associated with a list of genes. Bioinformatics 20:3710–3715. http://dx.doi.org/10.1093/bioinformatics/bth456.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.