37
Views
47
CrossRef citations to date
0
Altmetric
Article

Plk3 Interacts with and Specifically Phosphorylates VRK1 in Ser342, a Downstream Target in a Pathway That Induces Golgi Fragmentation

, &
Pages 1189-1201 | Received 22 Aug 2008, Accepted 10 Dec 2008, Published online: 21 Mar 2023

REFERENCES

  • Acharya, U., A. Mallabiabarrena, J. K. Acharya, and V. Malhotra. 1998. Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis. Cell 92:183–192.
  • Bahassi el, M., C. W. Conn, D. L. Myer, R. F. Hennigan, C. H. McGowan, Y. Sanchez, and P. J. Stambrook. 2002. Mammalian polo-like kinase 3 (Plk3) is a multifunctional protein involved in stress response pathways. Oncogene 21:6633–6640.
  • Bahassi el, M., R. F. Hennigan, D. L. Myer, and P. J. Stambrook. 2004. Cdc25C phosphorylation on serine 191 by Plk3 promotes its nuclear translocation. Oncogene 23:2658–2663.
  • Bahassi el, M., D. L. Myer, R. J. McKenney, R. F. Hennigan, and P. J. Stambrook. 2006. Priming phosphorylation of Chk2 by polo-like kinase 3 (Plk3) mediates its full activation by ATM and a downstream checkpoint in response to DNA damage. Mutat. Res. 596:166–176.
  • Barcia, R., S. Lopez-Borges, F. M. Vega, and P. A. Lazo. 2002. Kinetic properties of p53 phosphorylation by the human vaccinia-related kinase 1. Arch. Biochem. Biophys. 399:1–5.
  • Bartek, J., J. Falck, and J. Lukas. 2001. CHK2 kinase—a busy messenger. Nat. Rev. Mol. Cell. Biol. 2:877–886.
  • Blanco, S., L. Klimcakova, F. M. Vega, and P. A. Lazo. 2006. The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. FEBS J. 273:2487–2504.
  • Blanco, S., C. Santos, and P. A. Lazo. 2007. Vaccinia-related kinase 2 modulates the stress response to hypoxia mediated by TAK1. Mol. Cell. Biol. 27:7273–7283.
  • Blanco, S., M. Sanz-Garcia, C. R. Santos, and P. A. Lazo. 2008. Modulation of interleukin-1 transcriptional response by the interaction between VRK2 and the JIP1 scaffold protein. PLoS ONE 3:e1660.
  • Cha, H., and P. Shapiro. 2001. Tyrosine-phosphorylated extracellular signal-regulated kinase associates with the Golgi complex during G2/M phase of the cell cycle: evidence for regulation of Golgi structure. J. Cell Biol. 153:1355–1367.
  • Colanzi, A., and D. Corda. 2007. Mitosis controls the Golgi and the Golgi controls mitosis. Curr. Opin. Cell Biol. 19:386–393.
  • Colanzi, A., C. Sutterlin, and V. Malhotra. 2003. RAF1-activated MEK1 is found on the Golgi apparatus in late prophase and is required for Golgi complex fragmentation in mitosis. J. Cell Biol. 161:27–32.
  • Dhillon, A. S., S. Hagan, O. Rath, and W. Kolch. 2007. MAP kinase signalling pathways in cancer. Oncogene 26:3279–3290.
  • Eckerdt, F., J. Yuan, and K. Strebhardt. 2005. Polo-like kinases and oncogenesis. Oncogene 24:267–276.
  • Feinstein, T. N., and A. D. Linstedt. 2007. Mitogen-activated protein kinase kinase 1-dependent Golgi unlinking occurs in G2 phase and promotes the G2/M cell cycle transition. Mol. Biol. Cell 18:594–604.
  • Herzog, C. R. 2002. Chk2 meets Plk3 in damage control. Cell Cycle 1:408–409.
  • Jiang, N., X. Wang, M. Jhanwar-Uniyal, Z. Darzynkiewicz, and W. Dai. 2006. Polo box domain of Plk3 functions as a centrosome localization signal, overexpression of which causes mitotic arrest, cytokinesis defects, and apoptosis. J. Biol. Chem. 281:10577–10582.
  • Kano, F., K. Takenaka, A. Yamamoto, K. Nagayama, E. Nishida, and M. Murata. 2000. MEK and Cdc2 kinase are sequentially required for Golgi disassembly in MDCK cells by the mitotic Xenopus extracts. J. Cell Biol. 149:357–368.
  • Li, Z., J. Niu, T. Uwagawa, B. Peng, and P. J. Chiao. 2005. Function of polo-like kinase 3 in NF-kappaB-mediated proapoptotic response. J. Biol. Chem. 280:16843–16850.
  • Lopez-Borges, S., and P. A. Lazo. 2000. The human vaccinia-related kinase 1 (VRK1) phosphorylates threonine-18 within the mdm-2 binding site of the p53 tumour suppressor protein. Oncogene 19:3656–3664.
  • Lowe, M., C. Rabouille, N. Nakamura, R. Watson, M. Jackman, E. Jamsa, D. Rahman, D. J. Pappin, and G. Warren. 1998. Cdc2 kinase directly phosphorylates the cis-Golgi matrix protein GM130 and is required for Golgi fragmentation in mitosis. Cell 94:783–793.
  • Murphy, L. O., and J. Blenis. 2006. MAPK signal specificity: the right place at the right time. Trends Biochem. Sci. 31:268–275.
  • Myer, D. L., M. Bahassi el, and P. J. Stambrook. 2005. The Plk3-Cdc25 circuit. Oncogene 24:299–305.
  • Nichols, R. J., and P. Traktman. 2004. Characterization of three paralogous members of the mammalian vaccinia related kinase family. J. Biol. Chem. 279:7934–7946.
  • Nichols, R. J., M. S. Wiebe, and P. Traktman. 2006. The vaccinia-related kinases phosphorylate the N′ terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. Mol. Biol. Cell 17:2451–2464.
  • Ouyang, B., W. Li, H. Pan, J. Meadows, I. Hoffmann, and W. Dai. 1999. The physical association and phosphorylation of Cdc25C protein phosphatase by Prk. Oncogene 18:6029–6036.
  • Preisinger, C., and F. A. Barr. 2001. Signaling pathways regulating Golgi structure and function. Sci. STKE 2001:PE38.
  • Ruan, Q., Q. Wang, S. Xie, Y. Fang, Z. Darzynkiewicz, K. Guan, M. Jhanwar-Uniyal, and W. Dai. 2004. Polo-like kinase 3 is Golgi localized and involved in regulating Golgi fragmentation during the cell cycle. Exp. Cell Res. 294:51–59.
  • Sanz-Garcia, M., I. Lopez-Sanchez, and P. A. Lazo. 2008. Proteomic identification of nuclear Ran GTPase as an inhibitor of human VRK1 and VRK2 (vaccinia-related kinase) activities. Mol. Cell. Proteomics 7:2199–2214.
  • Seemann, J., M. Pypaert, T. Taguchi, J. Malsam, and G. Warren. 2002. Partitioning of the matrix fraction of the Golgi apparatus during mitosis in animal cells. Science 295:848–851.
  • Sevilla, A., C. R. Santos, R. Barcia, F. M. Vega, and P. A. Lazo. 2004. c-Jun phosphorylation by the human vaccinia-related kinase 1 (VRK1) and its cooperation with the N-terminal kinase of c-Jun (JNK). Oncogene 23:8950–8958.
  • Sevilla, A., C. R. Santos, F. M. Vega, and P. A. Lazo. 2004. Human vaccinia-related kinase 1 (VRK1) activates the ATF2 transcriptional activity by novel phosphorylation on Thr-73 and Ser-62 and cooperates with JNK. J. Biol. Chem. 279:27458–27465.
  • Shorter, J., and G. Warren. 2002. Golgi architecture and inheritance. Annu. Rev. Cell Dev. Biol. 18:379–420.
  • Stewart, Z. A., L. J. Tang, and J. A. Pietenpol. 2001. Increased p53 phosphorylation after microtubule disruption is mediated in a microtubule inhibitor- and cell-specific manner. Oncogene 20:113–124.
  • Turjanski, A. G., J. P. Vaque, and J. S. Gutkind. 2007. MAP kinases and the control of nuclear events. Oncogene 26:3240–3253.
  • Valbuena, A., I. Lopez-Sanchez, and P. A. Lazo. 2008. Human VRK1 is an early response gene and its loss causes a block in cell cycle progression. PLoS ONE 3:e1642.
  • Valbuena, A., I. Lopez-Sanchez, F. M. Vega, A. Sevilla, M. Sanz-Garcia, S. Blanco, and P. A. Lazo. 2007. Identification of a dominant epitope in human vaccinia-related kinase 1 (VRK1) and detection of different intracellular subpopulations. Arch. Biochem. Biophys. 465:219–226.
  • Valbuena, A., F. M. Vega, S. Blanco, and P. A. Lazo. 2006. p53 downregulates its activating vaccinia-related kinase 1, forming a new autoregulatory loop. Mol. Cell. Biol. 26:4782–4793.
  • van de Weerdt, B. C., and R. H. Medema. 2006. Polo-like kinases: a team in control of the division. Cell Cycle 5:853–864.
  • Vega, F. M., A. Sevilla, and P. A. Lazo. 2004. p53 stabilization and accumulation induced by human vaccinia-related kinase 1. Mol. Cell. Biol. 24:10366–10380.
  • Wang, Q., S. Xie, J. Chen, K. Fukasawa, U. Naik, F. Traganos, Z. Darzynkiewicz, M. Jhanwar-Uniyal, and W. Dai. 2002. Cell cycle arrest and apoptosis induced by human polo-like kinase 3 is mediated through perturbation of microtubule integrity. Mol. Cell. Biol. 22:3450–3459.
  • Xie, S., Q. Wang, Q. Ruan, T. Liu, M. Jhanwar-Uniyal, K. Guan, and W. Dai. 2004. MEK1-induced Golgi dynamics during cell cycle progression is partly mediated by polo-like kinase-3. Oncogene 23:3822–3829.
  • Xie, S., Q. Wang, H. Wu, J. Cogswell, L. Lu, M. Jhanwar-Uniyal, and W. Dai. 2001. Reactive oxygen species-induced phosphorylation of p53 on serine 20 is mediated in part by polo-like kinase-3. J. Biol. Chem. 276:36194–36199.
  • Xie, S., H. Wu, Q. Wang, J. P. Cogswell, I. Husain, C. Conn, P. Stambrook, M. Jhanwar-Uniyal, and W. Dai. 2001. Plk3 functionally links DNA damage to cell cycle arrest and apoptosis at least in part via the p53 pathway. J. Biol. Chem. 276:43305–43312.
  • Xie, S., H. Wu, Q. Wang, J. Kunicki, R. O. Thomas, R. E. Hollingsworth, J. Cogswell, and W. Dai. 2002. Genotoxic stress-induced activation of Plk3 is partly mediated by Chk2. Cell Cycle 1:424–429.
  • Xie, S., B. Xie, M. Y. Lee, and W. Dai. 2005. Regulation of cell cycle checkpoints by polo-like kinases. Oncogene 24:277–286.
  • Yasuda, J., A. J. Whitmarsh, J. Cavanagh, M. Sharma, and R. J. Davis. 1999. The JIP group of mitogen-activated protein kinase scaffold proteins. Mol. Cell. Biol. 19:7245–7254.
  • Zimmerman, W. C., and R. L. Erikson. 2007. Polo-like kinase 3 is required for entry into S phase. Proc. Natl. Acad. Sci. USA 104:1847–1852.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.