84
Views
41
CrossRef citations to date
0
Altmetric
Article

Screening with a Novel Cell-Based Assay for TAZ Activators Identifies a Compound That Enhances Myogenesis in C2C12 Cells and Facilitates Muscle Repair in a Muscle Injury Model

, , , , , , , , , , , , & show all
Pages 1607-1621 | Received 08 Oct 2013, Accepted 11 Feb 2014, Published online: 20 Mar 2023

REFERENCES

  • Kanai F, Marignani PA, Sarbassova D, Yagi R, Hall RA, Donowitz M, Hisaminato A, Fujiwara T, Ito Y, Cantley LC, Yaffe MB. 2000. TAZ: a novel transcriptional co-activator regulated by interactions with 14-3-3 and PDZ domain proteins. EMBO J. 19:6778–6791. http://dx.doi.org/10.1093/emboj/19.24.6778.
  • Hong W, Guan KL. 2012. The YAP and TAZ transcription co-activators: key downstream effectors of the mammalian Hippo pathway. Semin. Cell Dev. Biol. 23:785–793. http://dx.doi.org/10.1016/j.semcdb.2012.05.004.
  • Wang K, Degerny C, Xu M, Yang XJ. 2009. YAP, TAZ, and Yorkie: a conserved family of signal-responsive transcriptional coregulators in animal development and human disease. Biochem. Cell Biol. 87:77–91. http://dx.doi.org/10.1139/O08-114.
  • Sudol M. 1994. Yes-associated protein (YAP65) is a proline-rich phosphoprotein that binds to the SH3 domain of the Yes proto-oncogene product. Oncogene 9:2145–2152.
  • Bao Y, Hata Y, Ikeda M, Withanage K. 2011. Mammalian Hippo pathway: from development to cancer and beyond. J. Biochem. 149:361–379. http://dx.doi.org/10.1093/jb/mvr021.
  • Pan D. 2010. The Hippo signaling pathway in development and cancer. Dev. Cell 19:491–505. http://dx.doi.org/10.1016/j.devcel.2010.09.011.
  • Oka T, Remue E, Meerschaert K, Vanloo B, Boucherie C, Gfeller D, Bader GD, Sidhu SS, Vandekerckhove J, Gettemans J, Sudol M. 2010. Functional complexes between YAP2 and ZO-2 are PDZ domain-dependent, and regulate YAP2 nuclear localization and signalling. Biochem. J. 432:461–472. http://dx.doi.org/10.1042/BJ20100870.
  • Remue E, Meerschaert K, Oka T, Boucherie C, Vandekerckhove J, Sudol M, Gettemans J. 2010. TAZ interacts with zonula occludens-1 and -2 proteins in a PDZ-1 dependent manner. FEBS Lett. 584:4175–4180. http://dx.doi.org/10.1016/j.febslet.2010.09.020.
  • Chan SW, Lim CJ, Chong YF, Pobbati AV, Huang C, Hong W. 2011. Hippo pathway-independent restriction of TAZ and YAP by angiomotin. J. Biol. Chem. 286:7018–7026. http://dx.doi.org/10.1074/jbc.C110.212621.
  • Zhao B, Li L, Lu Q, Wang LH, Liu CY, Lei Q, Guan KL. 2011. Angiomotin is a novel Hippo pathway component that inhibits YAP oncoprotein. Genes Dev. 25:51–63. http://dx.doi.org/10.1101/gad.2000111.
  • Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S. 2011. Role of YAP/TAZ in mechanotransduction. Nature 474:179–183. http://dx.doi.org/10.1038/nature10137.
  • Halder G, Dupont S, Piccolo S. 2012. Transduction of mechanical and cytoskeletal cues by YAP and TAZ. Nat. Rev. Mol. Cell Biol. 13:591–600. http://dx.doi.org/10.1038/nrm3416.
  • Wrighton KH. 2011. Mechanotransduction: YAP and TAZ feel the force. Nat. Rev. Mol. Cell Biol. 12:404. http://dx.doi.org/10.1038/nrm3145, http://dx.doi.org/10.1038/nrm3136.
  • Azzolin L, Zanconato F, Bresolin S, Forcato M, Basso G, Bicciato S, Cordenonsi M, Piccolo S. 2012. Role of TAZ as mediator of Wnt signaling. Cell 151:1443–1456. http://dx.doi.org/10.1016/j.cell.2012.11.027.
  • Imajo M, Miyatake K, Iimura A, Miyamoto A, Nishida E. 2012. A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling. EMBO J. 31:1109–1122. http://dx.doi.org/10.1038/emboj.2011.487.
  • Varelas X, Miller BW, Sopko R, Song S, Gregorieff A, Fellouse FA, Sakuma R, Pawson T, Hunziker W, McNeill H, Wrana JL, Attisano L. 2010. The Hippo pathway regulates Wnt/beta-catenin signaling. Dev. Cell 18:579–591. http://dx.doi.org/10.1016/j.devcel.2010.03.007.
  • de Cristofaro T, Di Palma T, Ferraro A, Corrado A, Lucci V, Franco R, Fusco A, Zannini M. 2011. TAZ/WWTR1 is overexpressed in papillary thyroid carcinoma. Eur. J. Cancer 47:926–933. http://dx.doi.org/10.1016/j.ejca.2010.11.008.
  • Wang L, Shi S, Guo Z, Zhang X, Han S, Yang A, Wen W, Zhu Q. 2013. Overexpression of YAP and TAZ is an independent predictor of prognosis in colorectal cancer and related to the proliferation and metastasis of colon cancer cells. PLoS One 8:e65539. http://dx.doi.org/10.1371/journal.pone.0065539.
  • Wei Z, Wang Y, Li Z, Yuan C, Zhang W, Wang D, Ye J, Jiang H, Wu Y, Cheng J. 29 March 2013. Overexpression of Hippo pathway effector TAZ in tongue squamous cell carcinoma: correlation with clinicopathological features and patients' prognosis. J. Oral Pathol. Med. (Epub ahead of print.) http://dx.doi.org/10.1111/jop.12062.
  • Yuen HF, McCrudden CM, Huang YH, Tham JM, Zhang X, Zeng Q, Zhang SD, Hong W. 2013. TAZ expression as a prognostic indicator in colorectal cancer. PLoS One 8:e54211. http://dx.doi.org/10.1371/journal.pone.0054211.
  • Zhou Z, Hao Y, Liu N, Raptis L, Tsao MS, Yang X. 2011. TAZ is a novel oncogene in non-small cell lung cancer. Oncogene 30:2181–2186. http://dx.doi.org/10.1038/onc.2010.606.
  • Bhat KP, Salazar KL, Balasubramaniyan V, Wani K, Heathcock L, Hollingsworth F, James JD, Gumin J, Diefes KL, Kim SH, Turski A, Azodi Y, Yang Y, Doucette T, Colman H, Sulman EP, Lang FF, Rao G, Copray S, Vaillant BD, Aldape KD. 2011. The transcriptional coactivator TAZ regulates mesenchymal differentiation in malignant glioma. Genes Dev. 25:2594–2609. http://dx.doi.org/10.1101/gad.176800.111.
  • Chan SW, Lim CJ, Guo K, Ng CP, Lee I, Hunziker W, Zeng Q, Hong W. 2008. A role for TAZ in migration, invasion, and tumorigenesis of breast cancer cells. Cancer Res. 68:2592–2598. http://dx.doi.org/10.1158/0008-5472.CAN-07-2696.
  • Cordenonsi M, Zanconato F, Azzolin L, Forcato M, Rosato A, Frasson C, Inui M, Montagner M, Parenti AR, Poletti A, Daidone MG, Dupont S, Basso G, Bicciato S, Piccolo S. 2011. The Hippo transducer TAZ confers cancer stem cell-related traits on breast cancer cells. Cell 147:759–772. http://dx.doi.org/10.1016/j.cell.2011.09.048.
  • Hao J, Zhang Y, Jing D, Li Y, Li J, Zhao Z. 2014. Role of Hippo signaling in cancer stem cells. J. Cell Physiol. 229:266–270. http://dx.doi.org/10.1002/jcp.24455.
  • Skinner M. 2012. Cancer stem cells: TAZ takes centre stage. Nat. Rev. Cancer 12:82–83. http://dx.doi.org/10.1038/nrc3210.
  • Chan SW, Lim CJ, Huang C, Chong YF, Gunaratne HJ, Hogue KA, Blackstock WP, Harvey KF, Hong W. 2011. WW domain-mediated interaction with Wbp2 is important for the oncogenic property of TAZ. Oncogene 30:600–610. http://dx.doi.org/10.1038/onc.2010.438.
  • Chan SW, Lim CJ, Loo LS, Chong YF, Huang C, Hong W. 2009. TEADs mediate nuclear retention of TAZ to promote oncogenic transformation. J. Biol. Chem. 284:14347–14358. http://dx.doi.org/10.1074/jbc.M901568200.
  • Zhang H, Liu CY, Zha ZY, Zhao B, Yao J, Zhao S, Xiong Y, Lei QY, Guan KL. 2009. TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J. Biol. Chem. 284:13355–13362. http://dx.doi.org/10.1074/jbc.M900843200.
  • Park KS, Whitsett JA, Di Palma T, Hong JH, Yaffe MB, Zannini M. 2004. TAZ interacts with TTF-1 and regulates expression of surfactant protein-C. J. Biol. Chem. 279:17384–17390. http://dx.doi.org/10.1074/jbc.M312569200.
  • Murakami M, Nakagawa M, Olson EN, Nakagawa O. 2005. A WW domain protein TAZ is a critical coactivator for TBX5, a transcription factor implicated in Holt-Oram syndrome. Proc. Natl. Acad. Sci. U. S. A. 102:18034–18039. http://dx.doi.org/10.1073/pnas.0509109102.
  • Varelas X, Sakuma R, Samavarchi-Tehrani P, Peerani R, Rao BM, Dembowy J, Yaffe MB, Zandstra PW, Wrana JL. 2008. TAZ controls Smad nucleocytoplasmic shuttling and regulates human embryonic stem-cell self-renewal. Nat. Cell Biol. 10:837–848. http://dx.doi.org/10.1038/ncb1748.
  • Varelas X, Samavarchi-Tehrani P, Narimatsu M, Weiss A, Cockburn K, Larsen BG, Rossant J, Wrana JL. 2010. The Crumbs complex couples cell density sensing to Hippo-dependent control of the TGF-β-SMAD pathway. Dev. Cell 19:831–844. http://dx.doi.org/10.1016/j.devcel.2010.11.012.
  • Hong JH, Hwang ES, McManus MT, Amsterdam A, Tian Y, Kalmukova R, Mueller E, Benjamin T, Spiegelman BM, Sharp PA, Hopkins N, Yaffe MB. 2005. TAZ, a transcriptional modulator of mesenchymal stem cell differentiation. Science 309:1074–1078. http://dx.doi.org/10.1126/science.1110955.
  • Cui CB, Cooper LF, Yang X, Karsenty G, Aukhil I. 2003. Transcriptional coactivation of bone-specific transcription factor Cbfa1 by TAZ. Mol. Cell. Biol. 23:1004–1013. http://dx.doi.org/10.1128/MCB.23.3.1004-1013.2003.
  • Jeong H, Bae S, An SY, Byun MR, Hwang JH, Yaffe MB, Hong JH, Hwang ES. 2010. TAZ as a novel enhancer of MyoD-mediated myogenic differentiation. FASEB J. 24:3310–3320. http://dx.doi.org/10.1096/fj.09-151324.
  • Murakami M, Tominaga J, Makita R, Uchijima Y, Kurihara Y, Nakagawa O, Asano T, Kurihara H. 2006. Transcriptional activity of Pax3 is co-activated by TAZ. Biochem. Biophys. Res. Commun. 339:533–539. http://dx.doi.org/10.1016/j.bbrc.2005.10.214.
  • Benhaddou A, Keime C, Ye T, Morlon A, Michel I, Jost B, Mengus G, Davidson I. 2012. Transcription factor TEAD4 regulates expression of myogenin and the unfolded protein response genes during C2C12 cell differentiation. Cell Death Differ. 19:220–231. http://dx.doi.org/10.1038/cdd.2011.87.
  • Zhu X, Topouzis S, Liang LF, Stotish RL. 2004. Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine 26:262–272. http://dx.doi.org/10.1016/j.cyto.2004.03.007.
  • Judson RN, Gray SR, Walker C, Carroll AM, Itzstein C, Lionikas A, Zammit PS, De Bari C, Wackerhage H. 2013. Constitutive expression of Yes-associated protein (Yap) in adult skeletal muscle fibres induces muscle atrophy and myopathy. PLoS One 8:e59622. http://dx.doi.org/10.1371/journal.pone.0059622.
  • Watt KI, Judson R, Medlow P, Reid K, Kurth TB, Burniston JG, Ratkevicius A, De Bari C, Wackerhage H. 2010. Yap is a novel regulator of C2C12 myogenesis. Biochem. Biophys. Res. Commun. 393:619–624. http://dx.doi.org/10.1016/j.bbrc.2010.02.034.
  • Sayer AA, Robinson SM, Patel HP, Shavlakadze T, Cooper C, Grounds MD. 2013. New horizons in the pathogenesis, diagnosis and management of sarcopenia. Age Ageing 42:145–150. http://dx.doi.org/10.1093/ageing/afs191.
  • Bao Y, Nakagawa K, Yang Z, Ikeda M, Withanage K, Ishigami-Yuasa M, Okuno Y, Hata S, Nishina H, Hata Y. 2011. A cell-based assay to screen stimulators of the Hippo pathway reveals the inhibitory effect of dobutamine on the YAP-dependent gene transcription. J. Biochem. 150:199–208. http://dx.doi.org/10.1093/jb/mvr063.
  • Ikeda M, Kawata A, Nishikawa M, Tateishi Y, Yamaguchi M, Nakagawa K, Hirabayashi S, Bao Y, Hidaka S, Hirata Y, Hata Y. 2009. Hippo pathway-dependent and -independent roles of RASSF6. Sci. Signal. 2:ra59. http://dx.doi.org/10.1126/scisignal.2000300.
  • Hirabayashi S, Nakagawa K, Sumita K, Hidaka S, Kawai T, Ikeda M, Kawata A, Ohno K, Hata Y. 2008. Threonine 74 of MOB1 is a putative key phosphorylation site by MST2 to form the scaffold to activate nuclear Dbf2-related kinase 1. Oncogene 27:4281–4292. http://dx.doi.org/10.1038/onc.2008.66.
  • Bao Y, Sumita K, Kudo T, Withanage K, Nakagawa K, Ikeda M, Ohno K, Wang Y, Hata Y. 2009. Roles of mammalian sterile 20-like kinase 2-dependent phosphorylations of Mps one binder 1B in the activation of nuclear Dbf2-related kinases. Genes Cells 14:1369–1381. http://dx.doi.org/10.1111/j.1365-2443.2009.01354.x.
  • Ota M, Sasaki H. 2008. Mammalian Tead proteins regulate cell proliferation and contact inhibition as transcriptional mediators of Hippo signaling. Development 135:4059–4069. http://dx.doi.org/10.1242/dev.027151.
  • Kobayashi N, Goto K, Horiguchi K, Nagata M, Kawata M, Miyazawa K, Saitoh M, Miyazono K. 2007. c-Ski activates MyoD in the nucleus of myoblastic cells through suppression of histone deacetylases. Genes Cells 12:375–385. http://dx.doi.org/10.1111/j.1365-2443.2007.01052.x.
  • Nelson JD, Denisenko O, Bomsztyk K. 2006. Protocol for the fast chromatin immunoprecipitation (ChIP) method. Nat. Protoc. 1:179–185. http://dx.doi.org/10.1038/nprot.2006.27.
  • Goodman CA, Mabrey DM, Frey JW, Miu MH, Schmidt EK, Pierre P, Hornberger TA. 2011. Novel insights into the regulation of skeletal muscle protein synthesis as revealed by a new nonradioactive in vivo technique. FASEB J. 25:1028–1039. http://dx.doi.org/10.1096/fj.10-168799.
  • Ikeda M, Hirabayashi S, Fujiwara N, Mori H, Kawata A, Iida J, Bao Y, Sato Y, Iida T, Sugimura H, Hata Y. 2007. Ras-association domain family protein 6 induces apoptosis via both caspase-dependent and caspase-independent pathways. Exp. Cell Res. 313:1484–1495. http://dx.doi.org/10.1016/j.yexcr.2007.02.013.
  • Hong JH, Yaffe MB. 2006. TAZ: a beta-catenin-like molecule that regulates mesenchymal stem cell differentiation. Cell Cycle 5:176–179. http://dx.doi.org/10.4161/cc.5.2.2362.
  • Lindon C, Montarras D, Pinset C. 1998. Cell cycle-regulated expression of the muscle determination factor Myf5 in proliferating myoblasts. J. Cell Biol. 140:111–118. http://dx.doi.org/10.1083/jcb.140.1.111.
  • Schakman O, Kalista S, Barbé C, Loumaye A, Thissen JP. 2013. Glucocorticoid-induced skeletal muscle atrophy. Int. J. Biochem. Cell Biol. 45:2163–2172. http://dx.doi.org/10.1016/j.biocel.2013.05.036.
  • Byun MR, Jeong H, Bae SJ, Kim AR, Hwang ES, Hong JH. 2012. TAZ is required for the osteogenic and anti-adipogenic activities of kaempferol. Bone 50:364–372. http://dx.doi.org/10.1016/j.bone.2011.10.035.
  • Jang EJ, Jeong H, Kang JO, Kim NJ, Kim MS, Choi SH, Yoo SE, Hong JH, Bae MA, Hwang ES. 2012. TM-25659 enhances osteogenic differentiation and suppresses adipogenic differentiation by modulating the transcriptional co-activator TAZ. Br. J. Pharmacol. 165:1584–1594. http://dx.doi.org/10.1111/j.1476-5381.2011.01664.x.
  • Olguín HC, Pisconti A. 2012. Marking the tempo for myogenesis: Pax7 and the regulation of muscle stem cell fate decisions. J. Cell. Mol. Med. 16:1013–1025. http://dx.doi.org/10.1111/j.1582-4934.2011.01348.x.
  • Wang YX, Rudnicki MA. 2012. Satellite cells, the engines of muscle repair. Nat. Rev. Mol. Cell Biol. 13:127–133. http://dx.doi.org/10.1038/nrm3265.
  • Zammit PS, Golding JP, Nagata Y, Hudon V, Partridge TA, Beauchamp JR. 2004. Muscle satellite cells adopt divergent fates: a mechanism for self-renewal? J. Cell Biol. 166:347–357. http://dx.doi.org/10.1083/jcb.200312007.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.