43
Views
32
CrossRef citations to date
0
Altmetric
Article

General and MicroRNA-Mediated mRNA Degradation Occurs on Ribosome Complexes in Drosophila Cells

, , , &
Pages 2309-2320 | Received 06 Nov 2014, Accepted 19 Apr 2015, Published online: 20 Mar 2023

REFERENCES

  • Meyer S, Temme C, Wahle E. 2004. Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit Rev Biochem Mol Biol 39:197–216. http://dx.doi.org/10.1080/10409230490513991.
  • Parker R, Song H. 2004. The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11:121–127. http://dx.doi.org/10.1038/nsmb724.
  • Houseley J, Tollervey D. 2009. The many pathways of RNA degradation. Cell 136:763–776. http://dx.doi.org/10.1016/j.cell.2009.01.019.
  • Yamashita A, Chang T-C, Yamashita Y, Zhu W, Zhong Z, Chen C-YA, Shyu A-B. 2005. Concerted action of poly(A) nucleases and decapping enzyme in mammalian mRNA turnover. Nat Struct Mol Biol 12:1054–1063. http://dx.doi.org/10.1038/nsmb1016.
  • Wahle E, Winkler GS. 2013. RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim Biophys Acta 1829:561–570. http://dx.doi.org/10.1016/j.bbagrm.2013.01.003.
  • Jacobson A, Peltz SW. 1996. Interrelationships of the pathways of mRNA decay and translation in eukaryotic cells. Annu Rev Biochem 65:693–739. http://dx.doi.org/10.1146/annurev.bi.65.070196.003401.
  • Braun JE, Huntzinger E, Fauser M, Izaurralde E. 2011. GW182 proteins directly recruit cytoplasmic deadenylase complexes to miRNA targets. Mol Cell 44:120–133. http://dx.doi.org/10.1016/j.molcel.2011.09.007.
  • Fabian MR, Cieplak MK, Frank F, Morita M, Green J, Srikumar T, Nagar B, Yamamoto T, Raught B, Duchaine TF, Sonenberg N. 2011. miRNA-mediated deadenylation is orchestrated by GW182 through two conserved motifs that interact with CCR4-NOT. Nat Struct Mol Biol 18:1211–1217. http://dx.doi.org/10.1038/nsmb.2149.
  • Chekulaeva M, Mathys H, Zipprich JT, Attig J, Colic M, Parker R, Filipowicz W. 2011. miRNA repression involves GW182-mediated recruitment of CCR4-NOT through conserved W-containing motifs. Nat Struct Mol Biol 18:1218–1226. http://dx.doi.org/10.1038/nsmb.2166.
  • Arribas-Layton M, Wu D, Lykke-Andersen J, Song H. 2013. Structural and functional control of the eukaryotic mRNA decapping machinery. Biochim Biophys Acta 1829:580–589. http://dx.doi.org/10.1016/j.bbagrm.2012.12.006.
  • Franks TM, Lykke-Andersen J. 2008. The control of mRNA decapping and P-body formation. Mol Cell 32:605–615. http://dx.doi.org/10.1016/j.molcel.2008.11.001.
  • Aharon T, Schneider RJ. 1993. Selective destabilization of short-lived mRNAs with the granulocyte-macrophage colony-stimulating factor AU-rich 3′ noncoding region is mediated by a cotranslational mechanism. Mol Cell Biol 13:1971–1980.
  • Laird-Offringa IA, de Wit CL, Elfferich P, van der Eb AJ. 1990. Poly(A) tail shortening is the translation-dependent step in c-myc mRNA degradation. Mol Cell Biol 10:6132–6140.
  • Wisdom R, Lee W. 1991. The protein-coding region of c-myc mRNA contains a sequence that specifies rapid mRNA turnover and induction by protein synthesis inhibitors. Genes Dev 5:232–243. http://dx.doi.org/10.1101/gad.5.2.232.
  • Savant-Bhonsale S, Cleveland DW. 1992. Evidence for instability of mRNAs containing AUUUA motifs mediated through translation-dependent assembly of a >20S degradation complex. Genes Dev 6:1927–1939. http://dx.doi.org/10.1101/gad.6.10.1927.
  • Winstall E, Gamache M, Raymond V. 1995. Rapid mRNA degradation mediated by the c-fos 3′ AU-rich element and that mediated by the granulocyte-macrophage colony-stimulating factor 3′ AU-rich element occur through similar polysome-associated mechanisms. Mol Cell Biol 15:3796–3804.
  • Schiavi SC, Wellington CL, Shyu AB, Chen CY, Greenberg ME, Belasco JG. 1994. Multiple elements in the c-fos protein-coding region facilitate mRNA deadenylation and decay by a mechanism coupled to translation. J Biol Chem 269:3441–3448.
  • Vindry C, Lauwers A, Hutin D, Soin R, Wauquier C, Kruys V, Gueydan C. 2012. dTIS11 protein-dependent polysomal deadenylation is the key step in AU-rich element-mediated mRNA decay in Drosophila cells. J Biol Chem 287:35527–35538. http://dx.doi.org/10.1074/jbc.M112.356188.
  • Popp MW-L, Maquat LE. 2013. Organizing principles of mammalian nonsense-mediated mRNA decay. Annu Rev Genet 47:139–165. http://dx.doi.org/10.1146/annurev-genet-111212-133424.
  • Graille M, Séraphin B. 2012. Surveillance pathways rescuing eukaryotic ribosomes lost in translation. Nat Rev Mol Cell Biol 13:727–735. http://dx.doi.org/10.1038/nrm3457.
  • Herrick D, Parker R, Jacobson A. 1990. Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol Cell Biol 10:2269–2284.
  • Peltz SW, Donahue JL, Jacobson A. 1992. A mutation in the tRNA nucleotidyltransferase gene promotes stabilization of mRNAs in Saccharomyces cerevisiae. Mol Cell Biol 12:5778–5784.
  • Mangus DA, Jacobson A. 1999. Linking mRNA turnover and translation: assessing the polyribosomal association of mRNA decay factors and degradative intermediates. Methods 17:28–37. http://dx.doi.org/10.1006/meth.1998.0704.
  • Hsu CL, Stevens A. 1993. Yeast cells lacking 5′→3′ exoribonuclease 1 contain mRNA species that are poly(A) deficient and partially lack the 5′ cap structure. Mol Cell Biol 13:4826–4835.
  • Schwartz DC, Parker R. 1999. Mutations in translation initiation factors lead to increased rates of deadenylation and decapping of mRNAs in Saccharomyces cerevisiae. Mol Cell Biol 19:5247–5256.
  • Schwartz DC, Parker R. 2000. mRNA decapping in yeast requires dissociation of the cap binding protein, eukaryotic translation initiation factor 4E. Mol Cell Biol 20:7933–7942. http://dx.doi.org/10.1128/MCB.20.21.7933-7942.2000.
  • Ramirez CV, Vilela C, Berthelot K, McCarthy JEG. 2002. Modulation of eukaryotic mRNA stability via the cap-binding translation complex eIF4F. J Mol Biol 318:951–962. http://dx.doi.org/10.1016/S0022-2836(02)00162-6.
  • Coller J, Parker R. 2005. General translational repression by activators of mRNA decapping. Cell 122:875–886. http://dx.doi.org/10.1016/j.cell.2005.07.012.
  • Nissan T, Rajyaguru P, She M, Song H, Parker R. 2010. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 39:773–783. http://dx.doi.org/10.1016/j.molcel.2010.08.025.
  • Huntzinger E, Kuzuoğlu-Öztürk D, Braun JE, Eulalio A, Wohlbold L, Izaurralde E. 2013. The interactions of GW182 proteins with PABP and deadenylases are required for both translational repression and degradation of miRNA targets. Nucleic Acids Res 41:978–994. http://dx.doi.org/10.1093/nar/gks1078.
  • Fukaya T, Tomari Y. 2012. MicroRNAs mediate gene silencing via multiple different pathways in Drosophila. Mol Cell 48:825–836. http://dx.doi.org/10.1016/j.molcel.2012.09.024.
  • Wickens M, Bernstein DS, Kimble J, Parker R. 2002. A PUF family portrait: 3′UTR regulation as a way of life. Trends Genet 18:150–157. http://dx.doi.org/10.1016/S0168-9525(01)02616-6.
  • Igreja C, Izaurralde E. 2011. CUP promotes deadenylation and inhibits decapping of mRNA targets. Genes Dev 25:1955–1967. http://dx.doi.org/10.1101/gad.17136311.
  • Bhandari D, Raisch T, Weichenrieder O, Jonas S, Izaurralde E. 2014. Structural basis for the Nanos-mediated recruitment of the CCR4-NOT complex and translational repression. Genes Dev 28:888–901. http://dx.doi.org/10.1101/gad.237289.113.
  • Blewett NH, Goldstrohm AC. 2012. A eukaryotic translation initiation factor 4E-binding protein promotes mRNA decapping and is required for PUF repression. Mol Cell Biol 32:4181–4194. http://dx.doi.org/10.1128/MCB.00483-12.
  • Goldstrohm AC, Hook BA, Seay DJ, Wickens M. 2006. PUF proteins bind Pop2p to regulate messenger RNAs. Nat Struct Mol Biol 13:533–539. http://dx.doi.org/10.1038/nsmb1100.
  • van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, Séraphin B. 2002. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 21:6915–6924. http://dx.doi.org/10.1093/emboj/cdf678.
  • Ingelfinger D, Arndt-Jovin DJ, Lührmann R, Achsel T. 2002. The human LSm1-7 proteins colocalize with the mRNA-degrading enzymes Dcp1/2 and Xrnl in distinct cytoplasmic foci. RNA 8:1489–1501. http://dx.doi.org/10.1017/S1355838202021726.
  • Eystathioy T, Chan EKL, Mahler M, Luft LM, Fritzler ML, Fritzler MJ. 2003. A panel of monoclonal antibodies to cytoplasmic GW bodies and the mRNA binding protein GW182. Hybrid Hybridomics 22:79–86. http://dx.doi.org/10.1089/153685903321947996.
  • Sheth U, Parker R. 2003. Decapping and decay of messenger RNA occur in cytoplasmic processing bodies. Science 300:805–808. http://dx.doi.org/10.1126/science.1082320.
  • Cougot N, Babajko S, Séraphin B. 2004. Cytoplasmic foci are sites of mRNA decay in human cells. J Cell Biol 165:31–40. http://dx.doi.org/10.1083/jcb.200309008.
  • Eystathioy T, Jakymiw A, Chan EKL, Séraphin B, Cougot N, Fritzler MJ. 2003. The GW182 protein colocalizes with mRNA degradation associated proteins hDcp1 and hLSm4 in cytoplasmic GW bodies. RNA 9:1171–1173. http://dx.doi.org/10.1261/rna.5810203.
  • Hu W, Sweet TJ, Chamnongpol S, Baker KE, Coller J. 2009. Co-translational mRNA decay in Saccharomyces cerevisiae. Nature 461:225–229. http://dx.doi.org/10.1038/nature08265.
  • Hu W, Petzold C, Coller J, Baker KE. 2010. Nonsense-mediated mRNA decapping occurs on polyribosomes in Saccharomyces cerevisiae. Nat Struct Mol Biol 17:244–247. http://dx.doi.org/10.1038/nsmb.1734.
  • Barišić-Jäger E, Krêcioch I, Hosiner S, Antic S, Dorner S. 2013. HPat a decapping activator interacting with the miRNA effector complex. PLoS One 8:e71860. http://dx.doi.org/10.1371/journal.pone.0071860.
  • Mito Y, Henikoff JG, Henikoff S. 2005. Genome-scale profiling of histone H3.3 replacement patterns. Nat Genet 37:1090–1097. http://dx.doi.org/10.1038/ng1637.
  • de Boer E, Rodriguez P, Bonte E, Krijgsveld J, Katsantoni E, Heck A, Grosveld F, Strouboulis J. 2003. Efficient biotinylation and single-step purification of tagged transcription factors in mammalian cells and transgenic mice. Proc Natl Acad Sci U S A 100:7480–7485. http://dx.doi.org/10.1073/pnas.1332608100.
  • Koelle MR, Talbot WS, Segraves WA, Bender MT, Cherbas P, Hogness DS. 1991. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 67:59–77. http://dx.doi.org/10.1016/0092-8674(91)90572-G.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408. http://dx.doi.org/10.1006/meth.2001.1262.
  • Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12. http://dx.doi.org/10.14806/ej.17.1.200.
  • Hoffmann S, Otto C, Kurtz S, Sharma CM, Khaitovich P, Vogel J, Stadler PF, Hackermüller J. 2009. Fast mapping of short sequences with mismatches, insertions and deletions using index structures. PLoS Comput Biol 5:e1000502. http://dx.doi.org/10.1371/journal.pcbi.1000502.
  • Hoffmann S, Otto C, Doose G, Tanzer A, Langenberger D, Christ S, Kunz M, Holdt L, Teupser D, Hackermüller J, Stadler PF. 2014. A multi-split mapping algorithm for circular RNA, splicing, trans-splicing, and fusion detection. Genome Biol 15:R34. http://dx.doi.org/10.1186/gb-2014-15-2-r34.
  • Wolfinger MT, Fallmann J, Eggenhofer F, Amman F. 2015. ViennaNGS: a toolbox for building efficient next-generation sequencing analysis pipelines. F1000Res 4:50. http://dx.doi.org/10.12688/f1000research.6157.1.
  • Anders S, Pyl PT, Huber W. 2015. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169. http://dx.doi.org/10.1093/bioinformatics/btu638.
  • Anders S, Huber W. 2010. Differential expression analysis for sequence count data. Genome Biol 11:R106. http://dx.doi.org/10.1186/gb-2010-11-10-r106.
  • Thermann R, Hentze MW. 2007. Drosophila miR2 induces pseudo-polysomes and inhibits translation initiation. Nature 447:875–878. http://dx.doi.org/10.1038/nature05878.
  • Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suárez-Fariñas M, Schwarz C, Stephan DA, Surmeier DJ, Greengard P, Heintz N. 2008. A translational profiling approach for the molecular characterization of CNS cell types. Cell 135:738–748. http://dx.doi.org/10.1016/j.cell.2008.10.028.
  • Thomas A, Lee P-J, Dalton JE, Nomie KJ, Stoica L, Costa-Mattioli M, Chang P, Nuzhdin S, Arbeitman MN, Dierick HA. 2012. A versatile method for cell-specific profiling of translated mRNAs in Drosophila. PLoS One 7:e40276. http://dx.doi.org/10.1371/journal.pone.0040276.
  • Dunn JG, Foo CK, Belletier NG, Gavis ER, Weissman JS. 2013. Ribosome profiling reveals pervasive and regulated stop codon readthrough in Drosophila melanogaster. eLife 2:e01179. http://dx.doi.org/10.7554/eLife.01179.
  • Braun JE, Truffault V, Boland A, Huntzinger E, Chang C-T, Haas G, Weichenrieder O, Coles M, Izaurralde E. 2012. A direct interaction between DCP1 and XRN1 couples mRNA decapping to 5′ exonucleolytic degradation. Nat Struct Mol Biol 19:1324–1331. http://dx.doi.org/10.1038/nsmb.2413.
  • Bonisch C, Temme C, Moritz B, Wahle E. 2007. Degradation of hsp70 and other mRNAs in Drosophila via the 5′ 3′ pathway and its regulation by heat shock. J Biol Chem 282:21818–21828. http://dx.doi.org/10.1074/jbc.M702998200.
  • Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P, Izaurralde E. 2006. mRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev 20:1885–1898. http://dx.doi.org/10.1101/gad.1424106.
  • Lauwers A, Twyffels L, Soin R, Wauquier C, Kruys V, Gueydan C. 2009. Post-transcriptional regulation of genes encoding anti-microbial peptides in Drosophila. J Biol Chem 284:8973–8983. http://dx.doi.org/10.1074/jbc.M806778200.
  • Muhlrad D, Decker CJ, Parker R. 1994. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 5′→3′ digestion of the transcript. Genes Dev 8:855–866. http://dx.doi.org/10.1101/gad.8.7.855.
  • Gatfield D, Izaurralde E. 2004. Nonsense-mediated messenger RNA decay is initiated by endonucleolytic cleavage in Drosophila. Nature 429:575–578. http://dx.doi.org/10.1038/nature02559.
  • Eulalio A, Rehwinkel J, Stricker M, Huntzinger E, Yang S-F, Doerks T, Dorner S, Bork P, Boutros M, Izaurralde E. 2007. Target-specific requirements for enhancers of decapping in miRNA-mediated gene silencing. Genes Dev 21:2558–2570. http://dx.doi.org/10.1101/gad.443107.
  • Malone C, Brennecke J, Czech B, Aravin A, Hannon GJ. 2012. Preparation of small RNA libraries for high-throughput sequencing. Cold Spring Harb Protoc 2012:1067–1077. http://dx.doi.org/10.1101/pdb.prot071431.
  • Fromont-Racine M, Bertrand E, Pictet R, Grange T. 1993. A highly sensitive method for mapping the 5′ termini of mRNAs. Nucleic Acids Res 21:1683–1684. http://dx.doi.org/10.1093/nar/21.7.1683.
  • Maruyama K, Sugano S. 1994. Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribonucleotides. Gene 138:171–174. http://dx.doi.org/10.1016/0378-1119(94)90802-8.
  • Volloch V, Schweitzer B, Rits S. 1994. Ligation-mediated amplification of RNA from murine erythroid cells reveals a novel class of beta globin mRNA with an extended 5′-untranslated region. Nucleic Acids Res 22:2507–2511. http://dx.doi.org/10.1093/nar/22.13.2507.
  • Wang Z, Jiao X, Carr-Schmid A, Kiledjian M. 2002. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci U S A 99:12663–12668. http://dx.doi.org/10.1073/pnas.192445599.
  • Lykke-Andersen J. 2002. Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 22:8114–8121. http://dx.doi.org/10.1128/MCB.22.23.8114-8121.2002.
  • Silber R, Malathi VG, Hurwitz J. 1972. Purification and properties of bacteriophage T4-induced RNA ligase. Proc Natl Acad Sci U S A 69:3009–3013. http://dx.doi.org/10.1073/pnas.69.10.3009.
  • Shinshi H, Miwa M, Sugimura T. 1976. Enzyme cleaving the 5′-terminal methylated blocked structure of messenger RNA. FEBS Lett 65:254–257. http://dx.doi.org/10.1016/0014-5793(76)80492-9.
  • Schneider MD, Bains AK, Rajendra TK, Dominski Z, Matera AG, Simmonds AJ. 2010. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene. RNA 16:2120–2130. http://dx.doi.org/10.1261/rna.2227710.
  • Hong X, Hammell M, Ambros V, Cohen SM. 2009. Immunopurification of Ago1 miRNPs selects for a distinct class of microRNA targets. Proc Natl Acad Sci U S A 106:15085–15090. http://dx.doi.org/10.1073/pnas.0908149106.
  • Sweet T, Kovalak C, Coller J. 2012. The DEAD-box protein Dhh1 promotes decapping by slowing ribosome movement. PLoS Biol 10:e1001342. http://dx.doi.org/10.1371/journal.pbio.1001342.
  • Rehwinkel J, Behm-Ansmant I, Gatfield D, Izaurralde E. 2005. A crucial role for GW182 and the DCP1:DCP2 decapping complex in miRNA-mediated gene silencing. RNA 11:1640–1647. http://dx.doi.org/10.1261/rna.2191905.
  • Landthaler M, Gaidatzis D, Rothballer A, Chen PY, Soll SJ, Dinic L, Ojo T, Hafner M, Zavolan M, Tuschl T. 2008. Molecular characterization of human Argonaute-containing ribonucleoprotein complexes and their bound target mRNAs. RNA 14:2580–2596. http://dx.doi.org/10.1261/rna.1351608.
  • Chu C-Y, Rana TM. 2006. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol 4:e210. http://dx.doi.org/10.1371/journal.pbio.0040210.
  • Decker CJ, Teixeira D, Parker R. 2007. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol 179:437–449. http://dx.doi.org/10.1083/jcb.200704147.
  • Sweet TJ, Boyer B, Hu W, Baker KE, Coller J. 2007. Microtubule disruption stimulates P-body formation. RNA 13:493–502. http://dx.doi.org/10.1261/rna.355807.
  • Eulalio A, Helms S, Fritzsch C, Fauser M, Izaurralde E. 2009. A C-terminal silencing domain in GW182 is essential for miRNA function. RNA 15:1067–1077. http://dx.doi.org/10.1261/rna.1605509.
  • Amrani N, Ghosh S, Mangus DA, Jacobson A. 2008. Translation factors promote the formation of two states of the closed-loop mRNP. Nature 453:1276–1280. http://dx.doi.org/10.1038/nature06974.
  • Gallie DR. 1991. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev 5:2108–2116. http://dx.doi.org/10.1101/gad.5.11.2108.
  • Tarun SZ, Sachs AB. 1996. Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J 15:7168–7177.
  • Haas G, Braun JE, Igreja C, Tritschler F, Nishihara T, Izaurralde E. 2010. HPat provides a link between deadenylation and decapping in metazoa. J Cell Biol 189:289–302. http://dx.doi.org/10.1083/jcb.200910141.
  • Chen Y, Boland A, Kuzuoğlu-Öztürk D, Bawankar P, Loh B, Chang C-T, Weichenrieder O, Izaurralde E. 2014. A DDX6-CNOT1 complex and W-binding pockets in CNOT9 reveal direct links between miRNA target recognition and silencing. Mol Cell 54:737–750. http://dx.doi.org/10.1016/j.molcel.2014.03.034.
  • Mathys H, Basquin J, Ozgur S, Czarnocki-Cieciura M, Bonneau F, Aartse A, Dziembowski A, Nowotny M, Conti E, Filipowicz W. 2014. Structural and biochemical insights to the role of the CCR4-NOT complex and DDX6 ATPase in microRNA repression. Mol Cell 54:751–765. http://dx.doi.org/10.1016/j.molcel.2014.03.036.
  • Jackson RJ, Hellen CUT, Pestova TV. 2010. The mechanism of eukaryotic translation initiation and principles of its regulation. Nat Rev Mol Cell Biol 11:113–127. http://dx.doi.org/10.1038/nrm2838.
  • Wu L, Fan J, Belasco JG. 2006. MicroRNAs direct rapid deadenylation of mRNA. Proc Natl Acad Sci U S A 103:4034–4039. http://dx.doi.org/10.1073/pnas.0510928103.
  • Giraldez AJ, Mishima Y, Rihel J, Grocock RJ, Van Dongen S, Inoue K, Enright AJ, Schier AF. 2006. Zebrafish MiR-430 promotes deadenylation and clearance of maternal mRNAs. Science 312:75–79. http://dx.doi.org/10.1126/science.1122689.
  • Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP. 2014. Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508:66–71. http://dx.doi.org/10.1038/nature13007.
  • Eichhorn SW, Guo H, McGeary SE, Rodriguez-Mias RA, Shin C, Baek D, Hsu S-H, Ghoshal K, Villén J, Bartel DP. 2014. mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell 56:104–115. http://dx.doi.org/10.1016/j.molcel.2014.08.028.
  • Guo H, Ingolia NT, Weissman JS, Bartel DP. 2010. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:835–840. http://dx.doi.org/10.1038/nature09267.
  • Hendrickson DG, Hogan DJ, McCullough HL, Myers JW, Herschlag D, Ferrell JE, Brown PO. 2009. Concordant regulation of translation and mRNA abundance for hundreds of targets of a human microRNA. PLoS Biol 7:e1000238. http://dx.doi.org/10.1371/journal.pbio.1000238.
  • Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. 2008. Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63. http://dx.doi.org/10.1038/nature07228.
  • Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP. 2008. The impact of microRNAs on protein output. Nature 455:64–71. http://dx.doi.org/10.1038/nature07242.
  • Teixeira D, Sheth U, Valencia-Sanchez MA, Brengues M, Parker R. 2005. Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11:371–382. http://dx.doi.org/10.1261/rna.7258505.
  • Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE, Anderson P. 2005. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol 169:871–884. http://dx.doi.org/10.1083/jcb.200502088.
  • Decker CJ, Parker R. 2012. P bodies and stress granules: possible roles in the control of translation and mRNA degradation. Cold Spring Harb Perspect Biol 4:a012286. http://dx.doi.org/10.1101/cshperspect.a012286.
  • Brengues M, Teixeira D, Parker R. 2005. Movement of eukaryotic mRNAs between polysomes and cytoplasmic processing bodies. Science 310:486–489. http://dx.doi.org/10.1126/science.1115791.
  • Bhattacharyya SN, Habermacher R, Martine U, Closs EI, Filipowicz W. 2006. Relief of microRNA-mediated translational repression in human cells subjected to stress. Cell 125:1111–1124. http://dx.doi.org/10.1016/j.cell.2006.04.031.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.