158
Views
61
CrossRef citations to date
0
Altmetric
Article

Structure of an SspH1-PKN1 Complex Reveals the Basis for Host Substrate Recognition and Mechanism of Activation for a Bacterial E3 Ubiquitin Ligase

, , , , , & show all
Pages 362-373 | Received 11 Oct 2013, Accepted 07 Nov 2013, Published online: 20 Mar 2023

REFERENCES

  • Komander D, Rape M. 2012. The ubiquitin code. Annu. Rev. Biochem. 81:203–229. http://dx.doi.org/10.1146/annurev-biochem-060310-170328.
  • Ravid T, Hochstrasser M. 2008. Diversity of degradation signals in the ubiquitin-proteasome system. Nat. Rev. Mol. Cell Biol. 9:679–690. http://dx.doi.org/10.1038/nrm2468.
  • Hayden MS, Ghosh S. 2012. NF-κB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 26:203–234. http://dx.doi.org/10.1101/gad.183434.111.
  • Jiang X, Chen ZJ. 2012. The role of ubiquitylation in immune defence and pathogen evasion. Nat. Rev. Immunol. 12:35–48. http://dx.doi.org/10.1038/nri3111.
  • Huett A, Heath RJ, Begun J, Sassi SO, Baxt LA, Vyas JM, Goldberg MB, Xavier RJ. 2012. The LRR and RING domain protein LRSAM1 is an E3 ligase crucial for ubiquitin-dependent autophagy of intracellular Salmonella typhimurium. Cell Host Microbe 12:778–790. http://dx.doi.org/10.1016/j.chom.2012.10.019.
  • Thurston TLM, Ryzhakov G, Bloor S, Muhlinen von, Randow NF. 2009. The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat. Immunol. 10:1215–1221. http://dx.doi.org/10.1038/ni.1800.
  • Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T, Brumell JH. 2009. The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J. Immunol. 183:5909–5916. http://dx.doi.org/10.4049/jimmunol.0900441.
  • Wild P, Farhan H, McEwan DG, Wagner S, Rogov VV, Brady NR, Richter B, Korac J, Waidmann O, Choudhary C, Dötsch V, Bumann D, Dikic I. 2011. Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333:228–233. http://dx.doi.org/10.1126/science.1205405.
  • Izoré T, Job V, Dessen A. 2011. Biogenesis, regulation, and targeting of the type III secretion system. Structure 19:603–612. http://dx.doi.org/10.1016/j.str.2011.03.015.
  • Mesquita FS, Thomas M, Sachse M, Santos AJM, Figueira R, Holden DW. 2012. The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates. PLoS Pathog. 8:e1002743. http://dx.doi.org/10.1371/journal.ppat.1002743.
  • Rytkönen A, Poh J, Garmendia J, Boyle C, Thompson A, Liu M, Freemont P, Hinton JCD, Holden DW. 2007. SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. Proc. Natl. Acad. Sci. U. S. A. 104:3502–3507. http://dx.doi.org/10.1073/pnas.0610095104.
  • Patel JC, Hueffer K, Lam TT, Galán JE. 2009. Diversification of a Salmonella virulence protein function by ubiquitin-dependent differential localization. Cell 137:283–294. http://dx.doi.org/10.1016/j.cell.2009.01.056.
  • Rohde JR, Breitkreutz A, Chenal A, Sansonetti PJ, Parsot C. 2007. Type III secretion effectors of the IpaH family are E3 ubiquitin ligases. Cell Host Microbe 1:77–83. http://dx.doi.org/10.1016/j.chom.2007.02.002.
  • Miao EA, Scherer CA, Tsolis RM, Kingsley RA, Adams LG, Bäumler AJ, Miller SI. 1999. Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. Mol. Microbiol. 34:850–864. http://dx.doi.org/10.1046/j.1365-2958.1999.01651.x.
  • Singer AU, Rohde JR, Lam R, Skarina T, Kagan O, DiLeo R, Chirgadze NY, Cuff ME, Joachimiak A, Tyers M, Sansonetti PJ, Parsot C, Savchenko A. 2008. Structure of the Shigella T3SS effector IpaH defines a new class of E3 ubiquitin ligases. Nat. Struct. Mol. Biol. 15:1293–1301. http://dx.doi.org/10.1038/nsmb.1511.
  • Reference deleted.
  • Huang L, Kinnucan E, Wang G, Beaudenon S, Howley PM, Huibregtse JM, Pavletich NP. 1999. Structure of an E6AP-UbcH7 complex: insights into ubiquitination by the E2-E3 enzyme cascade. Science 286:1321–1326. http://dx.doi.org/10.1126/science.286.5443.1321.
  • Scheffner M, Nuber U, Huibregtse JM. 1995. Protein ubiquitination involving an E1-E2-E3 enzyme ubiquitin thioester cascade. Nature 373:81–83. http://dx.doi.org/10.1038/373081a0.
  • Chou Y-C, Keszei AFA, Rohde JR, Tyers M, Sicheri F. 2012. Conserved structural mechanisms for autoinhibition in IpaH ubiquitin ligases. J. Biol. Chem. 287:268–275. http://dx.doi.org/10.1074/jbc.M111.316265.
  • Quezada CM, Hicks SW, Galán JE, Stebbins CE. 2009. A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. Proc. Natl. Acad. Sci. U. S. A. 106:4864–4869. http://dx.doi.org/10.1073/pnas.0811058106.
  • Zhu Y, Li H, Hu L, Wang J, Zhou Y, Pang Z, Liu L, Shao F. 2008. Structure of a Shigella effector reveals a new class of ubiquitin ligases. Nat. Struct. Mol. Biol. 15:1302–1308. http://dx.doi.org/10.1038/nsmb.1517.
  • Xia Z-P, Sun L, Chen X, Pineda G, Jiang X, Adhikari A, Zeng W, Chen ZJ. 2009. Direct activation of protein kinases by unanchored polyubiquitin chains. Nature 461:114–119. http://dx.doi.org/10.1038/nature08247.
  • Haraga A, Miller SI. 2006. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. Cell Microbiol. 8:837–846. http://dx.doi.org/10.1111/j.1462-5822.2005.00670.x.
  • Flynn P, Mellor H, Casamassima A, Parker PJ. 2000. Rho GTPase control of protein kinase C-related protein kinase activation by 3-phosphoinositide-dependent protein kinase. J. Biol. Chem. 275:11064–11070. http://dx.doi.org/10.1074/jbc.275.15.11064.
  • Maesaki R, Ihara K, Shimizu T, Kuroda S, Kaibuchi K, Hakoshima T. 1999. The structural basis of Rho effector recognition revealed by the crystal structure of human RhoA complexed with the effector domain of PKN/PRK1. Mol. Cell 4:793–803. http://dx.doi.org/10.1016/S1097-2765(00)80389-5.
  • Modha R, Campbell LJ, Nietlispach D, Buhecha HR, Owen D, Mott HR. 2008. The Rac1 polybasic region is required for interaction with its effector PRK1. J. Biol. Chem. 283:1492–1500. http://dx.doi.org/10.1074/jbc.M706760200.
  • Owen D, Lowe P, Nietlispach D, Brosnan C, Chirgadze NY, Parker PJ, Blundell T, Mott HR. 2003. Molecular dissection of the interaction between the small G proteins Rac1 and RhoA and protein kinase C-related kinase 1 (PRK1). J. Biol. Chem. 278:50578–50587. http://dx.doi.org/10.1074/jbc.M304313200.
  • Takahashi M, Mukai H, Toshimori M, Miyamoto M, Ono Y. 1998. Proteolytic activation of PKN by caspase-3 or related protease during apoptosis. Proc. Natl. Acad. Sci. U. S. A. 95:11566–11571. http://dx.doi.org/10.1073/pnas.95.20.11566.
  • Srikanth CV, Wall DM, Maldonado-Contreras A, Shi HN, Zhou D, Demma Z, Mumy KL, McCormick BA. 2010. Salmonella pathogenesis and processing of secreted effectors by caspase-3. Science 330:390–393. http://dx.doi.org/10.1126/science.1194598.
  • Hänisch J, Kölm R, Wozniczka M, Bumann D, Rottner K, Stradal TEB. 2011. Activation of a RhoA/myosin II-dependent but Arp2/3 complex-independent pathway facilitates Salmonella invasion. Cell Host Microbe 9:273–285. http://dx.doi.org/10.1016/j.chom.2011.03.009.
  • Ohlson MB, Huang Z, Alto NM, Blanc M-P, Dixon JE, Chai J, Miller SI. 2008. Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host Microbe 4:434–446. http://dx.doi.org/10.1016/j.chom.2008.08.012.
  • Hentschke M, Berneking L, Belmar Campos C, Buck F, Ruckdeschel K, Aepfelbacher M. 2010. Yersinia virulence factor YopM induces sustained RSK activation by interfering with dephosphorylation. PLoS One 5:e13165. http://dx.doi.org/10.1371/journal.pone.0013165.
  • Metzger E, Müller JM, Ferrari S, Buettner R, Schüle R. 2003. A novel inducible transactivation domain in the androgen receptor: implications for PRK in prostate cancer. EMBO J. 22:270–280. http://dx.doi.org/10.1093/emboj/cdg023.
  • Metzger E, Yin N, Wissmann M, Kunowska N, Fischer K, Friedrichs N, Patnaik D, Higgins JMG, Potier N, Scheidtmann K-H, Buettner R, Schüle R. 2008. Phosphorylation of histone H3 at threonine 11 establishes a novel chromatin mark for transcriptional regulation. Nat. Cell Biol. 10:53–60. http://dx.doi.org/10.1038/ncb1668.
  • Metzger E, Imhof A, Patel D, Kahl P, Hoffmeyer K, Friedrichs N, Müller JM, Greschik H, Kirfel J, Ji S, Kunowska N, Beisenherz-Huss C, Günther T, Buettner R, Schüle R. 2010. Phosphorylation of histone H3T6 by PKCβI controls demethylation at histone H3K4. Nature 464:792–796. http://dx.doi.org/10.1038/nature08839.
  • Chuang K-H, Altuwaijri S, Li G, Lai J-J, Chu C-Y, Lai K-P, Lin H-Y, Hsu J-W, Keng P, Wu M-C, Chang C. 2009. Neutropenia with impaired host defense against microbial infection in mice lacking androgen receptor. J. Exp. Med. 206:1181–1199. http://dx.doi.org/10.1084/jem.20082521.
  • Lai J-J, Lai K-P, Chuang K-H, Chang P, Yu I-C, Lin W-J, Chang C. 2009. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression. J. Clin. Investig. 119:3739–3751. http://dx.doi.org/10.1172/JCI39335.
  • Usher MG, Duan SZ, Ivaschenko CY, Frieler RA, Berger S, Schütz G, Lumeng CN, Mortensen RM. 2010. Myeloid mineralocorticoid receptor controls macrophage polarization and cardiovascular hypertrophy and remodeling in mice. J. Clin. Investig. 120:3350–3364. http://dx.doi.org/10.1172/JCI41080.
  • Yasui T, Sakakibara-Yada K, Nishimura T, Morita K, Tada S, Mosialos G, Kieff E, Kikutani H. 2012. Protein kinase N1, a cell inhibitor of Akt kinase, has a central role in quality control of germinal center formation. Proc. Natl. Acad. Sci. U. S. A. 109:21022–21027. http://dx.doi.org/10.1073/pnas.1218925110.
  • Kuijl C, Savage NDL, Marsman M, Tuin AW, Janssen L, Egan DA, Ketema M, van den Nieuwendijk R, van den Eeden SJF, Geluk A, Poot A, van der Marel G, Beijersbergen RL, Overkleeft H, Ottenhoff THM, Neefjes J. 2007. Intracellular bacterial growth is controlled by a kinase network around PKB/AKT1. Nature 450:725–730. http://dx.doi.org/10.1038/nature06345.
  • Otwinowski Z, Minor W. 1997. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276:307–326. http://dx.doi.org/10.1016/S0076-6879(97)76066-X.
  • McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ. 2007. Phaser crystallographic software. J. Appl. Crystallogr. 40:658–674. http://dx.doi.org/10.1107/S0021889807021206.
  • Murshudov GN, Vagin AA, Dodson EJ. 1997. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53:240–255. http://dx.doi.org/10.1107/S0907444996012255.
  • Adams PD, Afonine PV, Bunkóczi G, Chen VB, Davis IW, Echols N, Headd JJ, Hung L-W, Kapral GJ, Grosse-Kunstleve RW, McCoy AJ, Moriarty NW, Oeffner R, Read RJ, Richardson DC, Richardson JS, Terwilliger TC, Zwart PH. 2010. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66:213–221. http://dx.doi.org/10.1107/S0907444909052925.
  • Kelley LA, Sternberg MJE. 2009. Protein structure prediction on the Web: a case study using the Phyre server. Nat. Protoc. 4:363–371. http://dx.doi.org/10.1038/nprot.2009.2.
  • Emsley P, Lohkamp B, Scott WG, Cowtan K. 2010. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66:486–501. http://dx.doi.org/10.1107/S0907444910007493.
  • Battye TGG, Kontogiannis L, Johnson O, Powell HR, Leslie AGW. 2011. iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr. D Biol. Crystallogr. 67:271–281. http://dx.doi.org/10.1107/S0907444910048675.
  • Voss NR, Gerstein M. 2010. 3V: cavity, channel and cleft volume calculator and extractor. Nucleic Acids Res. 38:W555–W562. http://dx.doi.org/10.1093/nar/gkq395.
  • Bella J, Hindle KL, McEwan PA, Lovell SC. 2008. The leucine-rich repeat structure. Cell. Mol. Life Sci. 65:2307–2333. http://dx.doi.org/10.1007/s00018-008-8019-0.
  • Hao B, Zheng N, Schulman BA, Wu G, Miller JJ, Pagano M, Pavletich NP. 2005. Structural basis of the Cks1-dependent recognition of p27Kip1 by the SCFSkp2 ubiquitin ligase. Mol. Cell 20:9–19. http://dx.doi.org/10.1016/j.molcel.2005.09.003.
  • Tan X, Calderon-Villalobos LIA, Sharon M, Zheng C, Robinson CV, Estelle M, Zheng N. 2007. Mechanism of auxin perception by the TIR1 ubiquitin ligase. Nature 446:640–645. http://dx.doi.org/10.1038/nature05731.
  • Ham H, Sreelatha A, Orth K. 2011. Manipulation of host membranes by bacterial effectors. Nature 9:635–646. http://dx.doi.org/10.1038/nrmicro2602.
  • Ashida H, Ogawa M, Kim M, Mimuro H, Sasakawa C. 2012. Bacteria and host interactions in the gut epithelial barrier. Nat. Chem. Biol. 8:36–45. http://dx.doi.org/10.1038/nnano.2012.208.
  • Hsiung YG, Chang HC, Pellequer JL, La Valle R, Lanker S, Wittenberg C. 2001. F-box protein Grr1 interacts with phosphorylated targets via the cationic surface of its leucine-rich repeat. Mol. Cell. Biol. 21:2506–2520. http://dx.doi.org/10.1128/MCB.21.7.2506-2520.2001.
  • Niemann HH, Jäger Butler, VPJG, van den Heuvel J, Schmidt S, Ferraris D, Gherardi E, Heinz DW. 2007. Structure of the human receptor tyrosine kinase met in complex with the Listeria invasion protein InlB. Cell 130:235–246. http://dx.doi.org/10.1016/j.cell.2007.05.037.
  • LaRock CN, Cookson BT. 2012. The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe 12:799–805. http://dx.doi.org/10.1016/j.chom.2012.10.020.
  • Geddes K, Cruz F, Heffron F. 2007. Analysis of cells targeted by Salmonella type III secretion in vivo. PLoS Pathog. 3:e196. http://dx.doi.org/10.1371/journal.ppat.0030196.
  • Lai J-J, Lai K-P, Zeng W, Chuang K-H, Altuwaijri S, Chang C. 2012. How does the androgen receptor in the innate and adaptive immune system defend the body? Lessons from conditional AR knockout mice. Am. J. Pathol. 181:1504–1512. http://dx.doi.org/10.1016/j.ajpath.2012.07.008.
  • Bernal-Bayard J, Cardenal-Munoz E, Ramos-Morales F. 2010. The Salmonella type III secretion effector, Salmonella leucine-rich repeat protein (SlrP), targets the human chaperone ERdj3. J. Biol. Chem. 285:16360–16368. http://dx.doi.org/10.1074/jbc.M110.100669.
  • Singer AU, Schulze S, Skarina T, Xu X, Cui H, Eschen-Lippold L, Egler M, Srikumar T, Raught B, Lee J, Scheel D, Savchenko A, Bonas U. 2013. A pathogen type III effector with a novel E3 ubiquitin ligase architecture. PLoS Pathog. 9:e1003121. http://dx.doi.org/10.1371/journal.ppat.1003121.
  • Evdokimov AG, Anderson DE, Routzahn KM, Waugh DS. 2001. Unusual molecular architecture of the Yersinia pestis cytotoxin YopM: a leucine-rich repeat protein with the shortest repeating unit. J. Mol. Biol. 312:807–821. http://dx.doi.org/10.1006/jmbi.2001.4973.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.