25
Views
13
CrossRef citations to date
0
Altmetric
Article

Ecdysone-Induced Receptor Tyrosine Phosphatase PTP52F Regulates Drosophila Midgut Histolysis by Enhancement of Autophagy and Apoptosis

, , , , &
Pages 1594-1606 | Received 21 Oct 2013, Accepted 10 Feb 2014, Published online: 20 Mar 2023

REFERENCES

  • Lamb MJ. 1982. The DNA content of polytene nuclei in midgut and Malpighian tubule cells of adult Drosophila melanogaster. Wilhelm Roux Arch.Dev. Biol. 191:381–384. http://dx.doi.org/10.1007/BF00879628.
  • Hartenstein AY, Rugendorff A, Tepass U, Hartenstein V. 1992. The function of the neurogenic genes during epithelial development in the Drosophila embryo. Development 116:1203–1220.
  • Technau G, Campos Ortega J. 1986. Commitment and proliferative capabilities of neural and epidermal cell progenitors. Wilhelm Roux Arch. Dev. Biol. 195:445–454. http://dx.doi.org/10.1007/BF00375748.
  • Ryoo HD, Baehrecke EH. 2010. Distinct death mechanisms in Drosophila development. Curr. Opin. Cell Biol. 22:889–895. http://dx.doi.org/10.1016/j.ceb.2010.08.022.
  • Yin VP, Thummel CS. 2005. Mechanisms of steroid-triggered programmed cell death in Drosophila. Semin. Cell Dev. Biol. 16:237–243. http://dx.doi.org/10.1016/j.semcdb.2004.12.007.
  • Micchelli CA. 2012. The origin of intestinal stem cells in Drosophila. Dev. Dyn. 241:85–91. http://dx.doi.org/10.1002/dvdy.22759.
  • Jiang C, Baehrecke EH, Thummel CS. 1997. Steroid regulated programmed cell death during Drosophila metamorphosis. Development 124:4673–4683.
  • Li T, Bender M. 2000. A conditional rescue system reveals essential functions for the ecdysone receptor (EcR) gene during molting and metamorphosis in Drosophila. Development 127:2897–2905.
  • Baehrecke EH. 2000. Steroid regulation of programmed cell death during Drosophila development. Cell Death Differ. 7:1057–1062. http://dx.doi.org/10.1038/sj.cdd.4400753.
  • Lam G, Thummel CS. 2000. Inducible expression of double-stranded RNA directs specific genetic interference in Drosophila. Curr. Biol. 10:957–963. http://dx.doi.org/10.1016/S0960-9822(00)00631-X.
  • Lee CY, Cooksey BA, Baehrecke EH. 2002. Steroid regulation of midgut cell death during Drosophila development. Dev. Biol. 250:101–111. http://dx.doi.org/10.1006/dbio.2002.0784.
  • Denton D, Shravage B, Simin R, Mills K, Berry DL, Baehrecke EH, Kumar S. 2009. Autophagy, not apoptosis, is essential for midgut cell death in Drosophila. Curr. Biol. 19:1741–1746. http://dx.doi.org/10.1016/j.cub.2009.08.042.
  • Beckstead RB, Lam G, Thummel CS. 2005. The genomic response to 20-hydroxyecdysone at the onset of Drosophila metamorphosis. Genome. Biol. 6:R99. http://dx.doi.org/10.1186/gb-2005-6-12-r99.
  • Li TR, White KP. 2003. Tissue-specific gene expression and ecdysone-regulated genomic networks in Drosophila. Dev. Cell 5:59–72. http://dx.doi.org/10.1016/S1534-5807(03)00192-8.
  • Matozaki T, Murata Y, Mori M, Kotani T, Okazawa H, Ohnishi H. 2010. Expression, localization, and biological function of the R3 subtype of receptor-type protein tyrosine phosphatases in mammals. Cell. Signal. 22:1811–1817. http://dx.doi.org/10.1016/j.cellsig.2010.07.001.
  • Santhanam A, Liang SY, Chen DY, Chen GC, Meng TC. 2013. Midgut-enriched receptor protein tyrosine phosphatase PTP52F is required for Drosophila development during larva-pupa transition. FEBS J. 280:476–488. http://dx.doi.org/10.1111/j.1742-4658.2012.08696.x.
  • Elliott DA, Brand AH. 2008. The GAL4 system: a versatile system for the expression of genes. Methods Mol. Biol. 420:79–95. http://dx.doi.org/10.1007/978-1-59745-583-1_5.
  • Schubiger M, Wade AA, Carney GE, Truman JW, Bender M. 1998. Drosophila EcR-B ecdysone receptor isoforms are required for larval molting and for neuron remodeling during metamorphosis. Development 125:2053–2062.
  • Schindelholz B, Knirr M, Warrior R, Zinn K. 2001. Regulation of CNS and motor axon guidance in Drosophila by the receptor tyrosine phosphatase DPTP52F. Development 128:4371–4382.
  • Chang YC, Hung WT, Chang HC, Wu CL, Chiang AS, Jackson GR, Sang TK. 2011. Pathogenic VCP/TER94 alleles are dominant actives and contribute to neurodegeneration by altering cellular ATP level in a Drosophila IBMPFD model. PLoS Genet. 7:e1001288. http://dx.doi.org/10.1371/journal.pgen.1001288.
  • Yin VP, Thummel CS. 2004. A balance between the diap1 death inhibitor and reaper and hid death inducers controls steroid-triggered cell death in Drosophila. Proc. Natl. Acad. Sci. U. S. A. 101:8022–8027. http://dx.doi.org/10.1073/pnas.0402647101.
  • Juhász G, Hill JH, Yan Y, Sass M, Baehrecke EH, Backer JM, Neufeld TP. 2008. The class III PI(3)K Vps34 promotes autophagy and endocytosis but not TOR signaling in Drosophila. J. Cell Biol. 181:655–666. http://dx.doi.org/10.1083/jcb.200712051.
  • González-Polo RA, Boya P, Pauleau AL, Jalil A, Larochette N, Souquere S, Eskelinen EL, Pierron G, Saftig P, Kroemer G. 2005. The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J. Cell Sci. 118:3091–3102. http://dx.doi.org/10.1242/jcs.02447.
  • Clemens JC, Worby CA, Simonson-Leff N, Muda M, Maehama T, Hemmings BA, Dixon JE. 2000. Use of double-stranded RNA interference in Drosophila cell lines to dissect signal transduction pathways. Proc. Natl. Acad. Sci. U. S. A. 97:6499–6503. http://dx.doi.org/10.1073/pnas.110149597.
  • Flint AJ, Tiganis T, Barford D, Tonks NK. 1997. Development of “substrate-trapping” mutants to identify physiological substrates of protein tyrosine phosphatases. Proc. Natl. Acad. Sci. U. S. A. 94:1680–1685. http://dx.doi.org/10.1073/pnas.94.5.1680.
  • Chang YC, Lin SY, Liang SY, Pan KT, Chou CC, Chen CH, Liao CL, Khoo KH, Meng TC. 2008. Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy. J. Proteome Res. 7:1055–1066. http://dx.doi.org/10.1021/pr700801p.
  • Amanchy R, Zhong J, Hong R, Kim JH, Gucek M, Cole RN, Molina H, Pandey A. 2009. Identification of c-Src tyrosine kinase substrates in platelet-derived growth factor receptor signaling. Mol. Oncol. 3:439–450. http://dx.doi.org/10.1016/j.molonc.2009.07.001.
  • Li G, Zhao G, Schindelin H, Lennarz WJ. 2008. Tyrosine phosphorylation of ATPase p97 regulates its activity during ERAD. Biochem. Biophys. Res. Commun. 375:247–251. http://dx.doi.org/10.1016/j.bbrc.2008.08.018.
  • Pedraza LG, Stewart RA, Li DM, Xu T. 2004. Drosophila Src-family kinases function with Csk to regulate cell proliferation and apoptosis. Oncogene 23:4754–4762. http://dx.doi.org/10.1038/sj.onc.1207635.
  • Takahashi F, Endo S, Kojima T, Saigo K. 1996. Regulation of cell-cell contacts in developing Drosophila eyes by Dsrc41, a new, close relative of vertebrate c-src. Genes Dev. 10:1645–1656. http://dx.doi.org/10.1101/gad.10.13.1645.
  • Madsen L, Seeger M, Semple CA, Hartmann-Petersen R. 2009. New ATPase regulators—p97 goes to the PUB. Int. J. Biochem. Cell Biol. 41:2380–2388. http://dx.doi.org/10.1016/j.biocel.2009.05.017.
  • Meyer H, Bug M, Bremer S. 2012. Emerging functions of the VCP/p97 AAA-ATPase in the ubiquitin system. Nat. Cell Biol. 14:117–123. http://dx.doi.org/10.1038/ncb2407.
  • Zhao G, Zhou X, Wang L, Li G, Schindelin H, Lennarz WJ. 2007. Studies on peptide:N-glycanase-p97 interaction suggest that p97 phosphorylation modulates endoplasmic reticulum-associated degradation. Proc. Natl. Acad. Sci. U. S. A. 104:8785–8790. http://dx.doi.org/10.1073/pnas.0702966104.
  • Yin VP, Thummel CS, Bashirullah A. 2007. Down-regulation of inhibitor of apoptosis levels provides competence for steroid-triggered cell death. J. Cell Biol. 178:85–92. http://dx.doi.org/10.1083/jcb.200703206.
  • Duffy JB. 2002. GAL4 system in Drosophila: a fly geneticist's Swiss army knife. Genesis 34:1–15. http://dx.doi.org/10.1002/gene.10150.
  • Martin DN, Baehrecke EH. 2004. Caspases function in autophagic programmed cell death in Drosophila. Development 131:275–284. http://dx.doi.org/10.1242/dev.00933.
  • Scott RC, Juhasz G, Neufeld TP. 2007. Direct induction of autophagy by Atg1 inhibits cell growth and induces apoptotic cell death. Curr. Biol. 17:1–11. http://dx.doi.org/10.1016/j.cub.2006.10.053.
  • Pintér M, Jekely G, Szepesi RJ, Farkas A, Theopold U, Meyer HE, Lindholm D, Nassel DR, Hultmark D, Friedrich P. 1998. TER94, a Drosophila homolog of the membrane fusion protein CDC48/p97, is accumulated in nonproliferating cells: in the reproductive organs and in the brain of the imago. Insect Biochem. Mol. Biol. 28:91–98. http://dx.doi.org/10.1016/S0965-1748(97)00095-7.
  • Peters JM, Walsh MJ, Franke WW. 1990. An abundant and ubiquitous homo-oligomeric ring-shaped ATPase particle related to the putative vesicle fusion proteins Sec18p and NSF. EMBO J. 9:1757–1767.
  • Hampton RY. 2002. ER-associated degradation in protein quality control and cellular regulation. Curr. Opin. Cell Biol. 14:476–482. http://dx.doi.org/10.1016/S0955-0674(02)00358-7.
  • Meusser B, Hirsch C, Jarosch E, Sommer T. 2005. ERAD: the long road to destruction. Nat. Cell Biol. 7:766–772. http://dx.doi.org/10.1038/ncb0805-766.
  • Dai RM, Chen E, Longo DL, Gorbea CM, Li CC. 1998. Involvement of valosin-containing protein, an ATPase co-purified with IkappaBalpha and 26 S proteasome, in ubiquitin-proteasome-mediated degradation of IkappaBalpha. J. Biol. Chem. 273:3562–3573. http://dx.doi.org/10.1074/jbc.273.6.3562.
  • Dai RM, Li CC. 2001. Valosin-containing protein is a multi-ubiquitin chain-targeting factor required in ubiquitin-proteasome degradation. Nat. Cell Biol. 3:740–744. http://dx.doi.org/10.1038/35087056.
  • Orme M, Meier P. 2009. Inhibitor of apoptosis proteins in Drosophila: gatekeepers of death. Apoptosis 14:950–960. http://dx.doi.org/10.1007/s10495-009-0358-2.
  • Herman-Bachinsky Y, Ryoo HD, Ciechanover A, Gonen H. 2007. Regulation of the Drosophila ubiquitin ligase DIAP1 is mediated via several distinct ubiquitin system pathways. Cell Death Differ. 14:861–871. http://dx.doi.org/10.1038/sj.cdd.4402079.
  • Rumpf S, Lee SB, Jan LY, Jan YN. 2011. Neuronal remodeling and apoptosis require VCP-dependent degradation of the apoptosis inhibitor DIAP1. Development 138:1153–1160. http://dx.doi.org/10.1242/dev.062703.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.