20
Views
12
CrossRef citations to date
0
Altmetric
Article

Multisite Phosphorylation of the Sum1 Transcriptional Repressor by S-Phase Kinases Controls Exit from Meiotic Prophase in Yeast

, , , , &
Pages 2249-2263 | Received 24 Oct 2013, Accepted 01 Apr 2014, Published online: 20 Mar 2023

REFERENCES

  • Park KS, Mohapatra DP, Misonou H, Trimmer JS. 2006. Graded regulation of the Kv2.1 potassium channel by variable phosphorylation. Science 313:976–979. http://dx.doi.org/10.1126/science.1124254.
  • Koivomagi M, Valk E, Venta R, Iofik A, Lepiku M, Balog ER, Rubin SM, Morgan DO, Loog M. 2011. Cascades of multisite phosphorylation control Sic1 destruction at the onset of S-phase. Nature 480:128–131. http://dx.doi.org/10.1038/nature10560.
  • Nobles KN, Xiao K, Ahn S, Shukla AK, Lam CM, Rajagopal S, Strachan RT, Huang TY, Bressler EA, Hara MR, Shenoy SK, Gygi SP, Lefkowitz RJ. 2011. Distinct phosphorylation sites on the beta(2)-adrenergic receptor establish a barcode that encodes differential functions of beta-arrestin. Sci. Signal. 4:ra51. http://dx.doi.org/10.1126/scisignal.2001707.
  • Winter E. 2012. The Sum1/Ndt80 transcriptional switch and commitment to meiosis in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 76:1–15. http://dx.doi.org/10.1128/MMBR.05010-11.
  • Simchen G. 2009. Commitment to meiosis: what determines the mode of division in budding yeast? Bioessays 31:169–177. http://dx.doi.org/10.1002/bies.200800124.
  • Pierce M, Benjamin KR, Montano SP, Georgiadis MM, Winter E, Vershon AK. 2003. Sum1 and Ndt80 proteins compete for binding to middle sporulation element sequences that control meiotic gene expression. Mol. Cell. Biol. 23:4814–4825. http://dx.doi.org/10.1128/MCB.23.14.4814-4825.2003.
  • Chu S, Herskowitz I. 1998. Gametogenesis in yeast is regulated by a transcriptional cascade dependent on Ndt80. Mol. Cell 1:685–696. http://dx.doi.org/10.1016/S1097-2765(00)80068-4.
  • Pak J, Segall J. 2002. Regulation of the premiddle and middle phases of expression of the NDT80 gene during sporulation of Saccharomyces cerevisiae. Mol. Cell. Biol. 22:6417–6429. http://dx.doi.org/10.1128/MCB.22.18.6417-6429.2002.
  • Xie J, Pierce M, Gailus-Durner V, Wagner M, Winter E, Vershon AK. 1999. Sum1 and Hst1 repress middle sporulation-specific gene expression during mitosis in Saccharomyces cerevisiae. EMBO J. 18:6448–6454. http://dx.doi.org/10.1093/emboj/18.22.6448.
  • Mallory MJ, Cooper KF, Strich R. 2007. Meiosis-specific destruction of the Ume6p repressor by the Cdc20-directed APC/C. Mol. Cell 27:951–961. http://dx.doi.org/10.1016/j.molcel.2007.08.019.
  • Kassir Y, Granot D, Simchen G. 1988. IME1, a positive regulator gene of meiosis in S. cerevisiae. Cell 52:853–862. http://dx.doi.org/10.1016/0092-8674(88)90427-8.
  • Smith HE, Su SS, Neigeborn L, Driscoll SE, Mitchell AP. 1990. Role of IME1 expression in regulation of meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:6103–6113.
  • McCord R, Pierce M, Xie J, Wonkatal S, Mickel C, Vershon AK. 2003. Rfm1, a novel tethering factor required to recruit the Hst1 histone deacetylase for repression of middle sporulation genes. Mol. Cell. Biol. 23:2009–2016. http://dx.doi.org/10.1128/MCB.23.6.2009-2016.2003.
  • Ahmed NT, Bungard D, Shin ME, Moore M, Winter E. 2009. The Ime2 CDK-like kinase enhances the disassociation of the Sum1 repressor from middle meiotic promoters. Mol. Cell. Biol. 29:4352–4362. http://dx.doi.org/10.1128/MCB.00305-09.
  • Shin ME, Skokotas A, Winter E. 2010. The Cdk1 and Ime2 protein kinases trigger exit from meiotic prophase in Saccharomyces cerevisiae by inhibiting the Sum1 transcriptional repressor. Mol. Cell. Biol. 30:2996–3003. http://dx.doi.org/10.1128/MCB.01682-09.
  • Matos J, Lipp JJ, Bogdanova A, Guillot S, Okaz E, Junqueira M, Shevchenko A, Zachariae W. 2008. Dbf4-dependent CDC7 kinase links DNA replication to the segregation of homologous chromosomes in meiosis I. Cell 135:662–678. http://dx.doi.org/10.1016/j.cell.2008.10.026.
  • Sasanuma H, Hirota K, Fukuda T, Kakusho N, Kugou K, Kawasaki Y, Shibata T, Masai H, Ohta K. 2008. Cdc7-dependent phosphorylation of Mer2 facilitates initiation of yeast meiotic recombination. Genes Dev. 22:398–410. http://dx.doi.org/10.1101/gad.1626608.
  • Wan L, Niu H, Futcher B, Zhang C, Shokat KM, Boulton SJ, Hollingsworth NM. 2008. Cdc28-Clb5 (CDK-S) and Cdc7-Dbf4 (DDK) collaborate to initiate meiotic recombination in yeast. Genes Dev. 22:386–397. http://dx.doi.org/10.1101/gad.1626408.
  • Lo HC, Kunz RC, Chen X, Marullo A, Gygi SP, Hollingsworth NM. 2012. Cdc7-Dbf4 is a gene-specific regulator of meiotic transcription in yeast. Mol. Cell. Biol. 32:541–557. http://dx.doi.org/10.1128/MCB.06032-11.
  • Lo HC, Wan L, Rosebrock A, Futcher B, Hollingsworth NM. 2008. Cdc7-Dbf4 regulates NDT80 transcription as well as reductional segregation during budding yeast meiosis. Mol. Biol. Cell 19:4956–4967. http://dx.doi.org/10.1091/mbc.E08-07-0755.
  • Chen XL, Reindle A, Johnson ES. 2005. Misregulation of 2μm circle copy number in a SUMO pathway mutant. Mol. Cell. Biol. 25:4311–4320. http://dx.doi.org/10.1128/MCB.25.10.4311-4320.2005.
  • Weinreich M, Stillman B. 1999. Cdc7p-Dbf4p kinase binds to chromatin during S-phase and is regulated by both the APC and the RAD53 checkpoint pathway. EMBO J. 18:5334–5346. http://dx.doi.org/10.1093/emboj/18.19.5334.
  • Schaber M, Lindgren A, Schindler K, Bungard D, Kaldis P, Winter E. 2002. CAK1 promotes meiosis and spore formation in Saccharomyces cerevisiae in a CDC28-independent fashion. Mol. Cell. Biol. 22:57–68. http://dx.doi.org/10.1128/MCB.22.1.57-68.2002.
  • Whinston E, Omerza G, Singh A, Tio CW, Winter E. 2013. Activation of the Smk1 mitogen-activated protein kinase by developmentally regulated autophosphorylation. Mol. Cell. Biol. 33:688–700. http://dx.doi.org/10.1128/MCB.00973-12.
  • Krisak L, Strich R, Winters RS, Hall JP, Mallory MJ, Kreitzer D, Tuan RS, Winter E. 1994. SMK1, a developmentally regulated MAP kinase, is required for spore wall assembly in Saccharomyces cerevisiae. Genes Dev. 8:2151–2161. http://dx.doi.org/10.1101/gad.8.18.2151.
  • Moore M, Shin ME, Bruning A, Schindler K, Vershon A, Winter E. 2007. Arg-Pro-X-Ser/Thr is a consensus phosphoacceptor sequence for the meiosis-specific Ime2 protein kinase in Saccharomyces cerevisiae. Biochemistry 46:271–278. http://dx.doi.org/10.1021/bi061858p.
  • Lydall D, Nikolsky Y, Bishop DK, Weinert T. 1996. A meiotic recombination checkpoint controlled by mitotic checkpoint genes. Nature 383:840–843. http://dx.doi.org/10.1038/383840a0.
  • Lindgren A, Bungard D, Pierce M, Xie J, Vershon A, Winter E. 2000. The pachytene checkpoint in Saccharomyces cerevisiae requires the Sum1 transcriptional repressor. EMBO J. 19:6489–6497. http://dx.doi.org/10.1093/emboj/19.23.6489.
  • Pak J, Segall J. 2002. Role of Ndt80, Sum1, and Swe1 as targets of the meiotic recombination checkpoint that control exit from pachytene and spore formation in Saccharomyces cerevisiae. Mol. Cell. Biol. 22:6430–6440. http://dx.doi.org/10.1128/MCB.22.18.6430-6440.2002.
  • Hepworth SR, Friesen H, Segall J. 1998. NDT80 and the meiotic recombination checkpoint regulate expression of middle sporulation-specific genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 18:5750–5761.
  • Tung KS, Hong EJ, Roeder GS. 2000. The pachytene checkpoint prevents accumulation and phosphorylation of the meiosis-specific transcription factor Ndt80. Proc. Natl. Acad. Sci. U. S. A. 97:12187–12192. http://dx.doi.org/10.1073/pnas.220464597.
  • Wang Y, Chang CY, Wu JF, Tung KS. 2011. Nuclear localization of the meiosis-specific transcription factor Ndt80 is regulated by the pachytene checkpoint. Mol. Biol. Cell 22:1878–1886. http://dx.doi.org/10.1091/mbc.E10-12-1011.
  • Kuhne C, Linder P. 1993. A new pair of B-type cyclins from Saccharomyces cerevisiae that function early in the cell cycle. EMBO J. 12:3437–3447.
  • Schwob E, Nasmyth K. 1993. CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 7:1160–1175. http://dx.doi.org/10.1101/gad.7.7a.1160.
  • Epstein CB, Cross FR. 1992. CLB5: a novel B cyclin from budding yeast with a role in S phase. Genes Dev. 6:1695–1706. http://dx.doi.org/10.1101/gad.6.9.1695.
  • Stuart D, Wittenberg C. 1998. CLB5 and CLB6 are required for premeiotic DNA replication and activation of the meiotic S/M checkpoint. Genes Dev. 12:2698–2710. http://dx.doi.org/10.1101/gad.12.17.2698.
  • Hu F, Aparicio OM. 2005. Swe1 regulation and transcriptional control restrict the activity of mitotic cyclins toward replication proteins in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 102:8910–8915. http://dx.doi.org/10.1073/pnas.0406987102.
  • Hu F, Gan Y, Aparicio OM. 2008. Identification of Clb2 residues required for Swe1 regulation of Clb2-Cdc28 in Saccharomyces cerevisiae. Genetics 179:863–874. http://dx.doi.org/10.1534/genetics.108.086611.
  • Cho WH, Lee YJ, Kong SI, Hurwitz J, Lee JK. 2006. Cdc7 kinase phosphorylates serine residues adjacent to acidic amino acids in the minichromosome maintenance 2 protein. Proc. Natl. Acad. Sci. U. S. A. 103:11521–11526. http://dx.doi.org/10.1073/pnas.0604990103.
  • Masai H, Taniyama C, Ogino K, Matsui E, Kakusho N, Matsumoto S, Kim JM, Ishii A, Tanaka T, Kobayashi T, Tamai K, Ohtani K, Arai K. 2006. Phosphorylation of Mcm4 by Cdc7 kinase facilitates its interaction with Cdc45 on the chromatin. J. Biol. Chem. 281:39249–39261. http://dx.doi.org/10.1074/jbc.M608935200.
  • Clifford DM, Marinco SM, Brush GS. 2004. The meiosis-specific protein kinase Ime2 directs phosphorylation of replication protein A. J. Biol. Chem. 279:6163–6170. http://dx.doi.org/10.1074/jbc.M306943200.
  • Holt LJ, Hutti JE, Cantley LC, Morgan DO. 2007. Evolution of Ime2 phosphorylation sites on Cdk1 substrates provides a mechanism to limit the effects of the phosphatase Cdc14 in meiosis. Mol. Cell 25:689–702. http://dx.doi.org/10.1016/j.molcel.2007.02.012.
  • Sedgwick C, Rawluk M, Decesare J, Raithatha SA, Wohlschlegel J, Semchuk P, Ellison M, Yates Iii JR, Stuart DT. 2006. Saccharomyces cerevisiae Ime2 phosphorylates Sic1 at multiple PXS/T sites but is insufficient to trigger Sic1 degradation. Biochem. J. 399:151–160. http://dx.doi.org/10.1042/BJ20060363.
  • Wan L, Zhang C, Shokat KM, Hollingsworth NM. 2006. Chemical inactivation of Cdc7 kinase in budding yeast results in a reversible arrest that allows efficient cell synchronization prior to meiotic recombination. Genetics 174:1767–1774. http://dx.doi.org/10.1534/genetics.106.064303.
  • Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP, Morgan DO. 2009. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science 325:1682–1686. http://dx.doi.org/10.1126/science.1172867.
  • Raithatha SA, Stuart DT. 2008. The Saccharomyces cerevisiae CLB5 promoter contains two middle sporulation elements (MSEs) that are differentially regulated during sporulation. Yeast 25:259–272. http://dx.doi.org/10.1002/yea.1585.
  • Sheu YJ, Stillman B. 2006. Cdc7-Dbf4 phosphorylates MCM proteins via a docking site-mediated mechanism to promote S phase progression. Mol. Cell 24:101–113. http://dx.doi.org/10.1016/j.molcel.2006.07.033.
  • Dirick L, Goetsch L, Ammerer G, Byers B. 1998. Regulation of meiotic S phase by Ime2 and a Clb5,6-associated kinase in Saccharomyces cerevisiae. Science 281:1854–1857. http://dx.doi.org/10.1126/science.281.5384.1854.
  • Bousset K, Diffley JF. 1998. The Cdc7 protein kinase is required for origin firing during S-phase. Genes Dev. 12:480–490. http://dx.doi.org/10.1101/gad.12.4.480.
  • Donaldson AD, Fangman WL, Brewer BJ. 1998. Cdc7 is required throughout the yeast S-phase to activate replication origins. Genes Dev. 12:491–501. http://dx.doi.org/10.1101/gad.12.4.491.
  • Wagner M, Briza P, Pierce M, Winter E. 1999. Distinct steps in yeast spore morphogenesis require distinct Smk1 MAP kinase thresholds. Genetics 151:1327–1340.
  • Thomas BJ, Rothstein R. 1989. Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630. http://dx.doi.org/10.1016/0092-8674(89)90584-9.
  • Sikorski RS, Hieter P. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.