12
Views
14
CrossRef citations to date
0
Altmetric
Article

Ethanol-Induced Upregulation of 10-Formyltetrahydrofolate Dehydrogenase Helps Relieve Ethanol-Induced Oxidative Stress

, , , , , , , & show all
Pages 498-509 | Received 28 Oct 2013, Accepted 13 Nov 2013, Published online: 20 Mar 2023

REFERENCES

  • de Sanctis L, Memo L, Pichini S, Tarani L, Vagnarelli F. 2011. Fetal alcohol syndrome: new perspectives for an ancient and underestimated problem. J. Matern. Fetal Neonatal Med. 24(Suppl 1):34–37. http://dx.doi.org/10.3109/14767058.2011.607576.
  • Halsted CH, Villanueva JA, Devlin AM, Chandler CJ. 2002. Metabolic interactions of alcohol and folate. J. Nutr. 132(Suppl 8):2367S–2372S.
  • Ballard MS, Sun M, Ko J. 2012. Vitamin A, folate, and choline as a possible preventive intervention to fetal alcohol syndrome. Med. Hypotheses 78:489–493. http://dx.doi.org/10.1016/j.mehy.2012.01.014.
  • Tibbetts AS, Appling DR. 2010. Compartmentalization of mammalian folate-mediated one-carbon metabolism. Annu. Rev. Nutr. 30:57–81. http://dx.doi.org/10.1146/annurev.nutr.012809.104810.
  • Fu TF, Maras B, Barra D, Schirch V. 1999. A noncatalytic tetrahydrofolate tight binding site is on the small domain of 10-formyltetrahydrofolate dehydrogenase. Arch. Biochem. Biophys. 367:161–166.
  • Loucks E, Ahlgren S. 2012. Assessing teratogenic changes in a zebrafish model of fetal alcohol exposure. J. Vis. Exp. 61:63704. http://dx.doi.org/10.3791/3704.
  • Chang WN, Tsai JN, Chen BH, Fu TF. 2006. Cloning, expression, purification, and characterization of zebrafish cytosolic serine hydroxymethyltransferase. Protein Expr. Purif. 46:212–220. http://dx.doi.org/10.1016/j.pep.2005.08.027.
  • Chang WN, Tsai JN, Chen BH, Huang HS, Fu TF. 2007. Serine hydroxymethyltransferase isoforms are differentially inhibited by leucovorin: characterization and comparison of recombinant zebrafish serine hydroxymethyltransferases. Drug Metab. Dispos. 35:2127–2137. http://dx.doi.org/10.1124/dmd.107.016840.
  • Chang WN, Lin HC, Fu TF. 2010. Zebrafish 10-formyltetrahydrofolate dehydrogenase is similar to its mammalian isozymes for its structural and catalytic properties. Protein Expr. Purif. 72:217–222. http://dx.doi.org/10.1016/j.pep.2010.04.003.
  • Kao TT, Chang WN, Wu HL, Shi GY, Fu TF. 2009. Recombinant zebrafish γ-glutamyl hydrolase exhibits properties and catalytic activities comparable with those of mammalian enzyme. Drug Metab. Dispos. 37:302–309. http://dx.doi.org/10.1124/dmd.108.024042.
  • Kao TT, Wang KC, Chang WN, Lin CY, Chen BH, Wu HL, Shi GY, Tsai JN, Fu TF. 2008. Characterization and comparative studies of zebrafish and human recombinant dihydrofolate reductases: inhibition by folic acid and polyphenols. Drug Metab. Dispos. 36:508–516. http://dx.doi.org/10.1124/dmd.107.019299.
  • Westerfield M. 2007. The zebrafish book: guide for the laboratory use of zebrafish (Danio rerio). University of Oregon Press, Eugene, OR.
  • Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. 1995. Stages of embryonic development of the zebrafish. Dev. Dyn. 203:253–310.
  • Fu TF, Hunt S, Schirch V, Safo MK, Chen BH. 2005. Properties of human and rabbit cytosolic serine hydroxymethyltransferase are changed by single nucleotide polymorphic mutations. Arch. Biochem. Biophys. 442:92–101. http://dx.doi.org/10.1016/j.abb.2005.07.018.
  • Lin CJ, Hsiao TH, Chung YS, Chang WN, Yeh TM, Chen BH, Fu TF. 2011. Zebrafish Sp1-like protein is structurally and functionally comparable to human Sp1. Protein Expr. Purif. 76:36–43. http://dx.doi.org/10.1016/j.pep.2010.10.010.
  • Min H, Shane B, Stokstad EL. 1988. Identification of 10-formyltetrahydrofolate dehydrogenase-hydrolase as a major folate binding protein in liver cytosol. Biochim. Biophys. Acta 967:348–353.
  • Neymeyer VR, Tephly TR. 1994. Detection and quantification of 10-formyltetrahydrofolate dehydrogenase (10-FTHFDH) in rat retina, optic nerve, and brain. Life Sci. 54:L395–L399.
  • Wilson SD, Horne DW. 1982. Use of glycerol-cryoprotected Lactobacillus casei for microbiological assay of folic acid. Clin. Chem. 28:1198–1200.
  • Kao TT, Lee GH, Fu CC, Chen BH, Chen LT, Fu TF. 2013. Methotrexate-induced decrease in embryonic 5-methyl-tetrahydrofolate is irreversible with leucovorin supplementation. Zebrafish 10:326–337. http://dx.doi.org/10.1089/zeb.2013.0876.
  • Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, Tolliday NJ, Golub TR, Carr SA, Shamji AF, Stern AM, Mandinova A, Schreiber SL, Lee SW. 2011. Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475:231–234. http://dx.doi.org/10.1038/nature10167.
  • Anastasiou D, Poulogiannis G, Asara JM, Boxer MB, Jiang JK, Shen M, Bellinger G, Sasaki AT, Locasale JW, Auld DS, Thomas CJ, Vander Heiden MG, Cantley LC. 2011. Inhibition of pyruvate kinase M2 by reactive oxygen species contributes to cellular antioxidant responses. Science 334:1278–1283. http://dx.doi.org/10.1126/science.1211485.
  • Rezk BM, Haenen GR, van der Vijgh WJ, Bast A. 2003. Tetrahydrofolate and 5-methyltetrahydrofolate are folates with high antioxidant activity. Identification of the antioxidant pharmacophore. FEBS Lett. 555:601–605. http://dx.doi.org/10.1016/S0014-5793(03)01358-9.
  • Mason JB, Choi SW. 2005. Effects of alcohol on folate metabolism: implications for carcinogenesis. Alcohol 35:235–241. http://dx.doi.org/10.1016/j.alcohol.2005.03.012.
  • Oleinik NV, Krupenko NI, Krupenko SA. 2011. Epigenetic silencing of ALDH1L1, a metabolic regulator of cellular proliferation, in cancers. Genes Cancer 2:130–139. http://dx.doi.org/10.1177/1947601911405841.
  • Uddin RK, Singh SM. 2007. Ethanol-responsive genes: identification of transcription factors and their role in metabolomics. Pharmacogenomics J. 7:38–47. http://dx.doi.org/10.1038/sj.tpj.6500394.
  • Girgis S, Nasrallah IM, Suh JR, Oppenheim E, Zanetti KA, Mastri MG, Stover PJ. 1998. Molecular cloning, characterization and alternative splicing of the human cytoplasmic serine hydroxymethyltransferase gene. Gene 210:315–324. http://dx.doi.org/10.1016/S0378-1119(98)00085-7.
  • Dynan WS, Sazer S, Tjian R, Schimke RT. 1986. Transcription factor Sp1 recognizes a DNA sequence in the mouse dihydrofolate reductase promoter. Nature 319:246–248. http://dx.doi.org/10.1038/319246a0.
  • Lee SJ, Kang MH, Min H. 2011. Folic acid supplementation reduces oxidative stress and hepatic toxicity in rats treated chronically with ethanol. Nutr. Res. Pract. 5:520–526. http://dx.doi.org/10.4162/nrp.2011.5.6.520.
  • Cano MJ, Ayala A, Murillo ML, Carreras O. 2001. Protective effect of folic acid against oxidative stress produced in 21-day postpartum rats by maternal-ethanol chronic consumption during pregnancy and lactation period. Free Radic. Res. 34:1–8. http://dx.doi.org/10.1080/10715760100300011.
  • Hidiroglou N, Camilo ME, Beckenhauer HC, Tuma DJ, Barak AJ, Nixon PF, Selhub J. 1994. Effect of chronic alcohol ingestion on hepatic folate distribution in the rat. Biochem. Pharmacol. 47:1561–1566.
  • Lin G-W, McMartin KE, Collins TD. 1992. Effect of ethanol consumption during pregnancy on folate coenzyme distribution in fetal, maternal, and placental tissues. J. Nutr. Biochem. 3:182–187. http://dx.doi.org/10.1016/0955-2863(92)90114-X.
  • Horne DW, Briggs WT, Wagner C. 1978. Ethanol stimulates 5-methyltetrahydrofolate accumulation in isolated rat liver cells. Biochem. Pharmacol. 27:2069–2074.
  • Min H, Im ES, Seo JS, Mun JA, Burri BJ. 2005. Effects of chronic ethanol ingestion and folate deficiency on the activity of 10-formyltetrahydrofolate dehydrogenase in rat liver. Alcohol Clin. Exp. Res. 29:2188–2193. http://dx.doi.org/10.1097/01.aic.0000191765.02856.a8.
  • Viña J, Estrela JM, Guerri C, Romero FJ. 1980. Effect of ethanol on glutathione concentration in isolated hepatocytes. Biochem. J. 188:549–552.
  • Gliszczynska-Swiglo A. 2007. Folates as antioxidants. Food Chem. 101:1480–1483. http://dx.doi.org/10.1016/j.foodchem.2006.04.022.
  • Wagner C, Briggs WT, Horne DW, Cook RJ. 1995. 10-Formyltetrahydrofolate dehydrogenase: identification of the natural folate ligand, covalent labeling, and partial tryptic digestion. Arch. Biochem. Biophys. 316:141–147.
  • Kobayashi M, Li L, Iwamoto N, Nakajima-Takagi Y, Kaneko H, Nakayama Y, Eguchi M, Wada Y, Kumagai Y, Yamamoto M. 2009. The antioxidant defense system Keap1-Nrf2 comprises a multiple sensing mechanism for responding to a wide range of chemical compounds. Mol. Cell. Biol. 29:493–502. http://dx.doi.org/10.1128/MCB.01080-08.
  • Mitsuishi Y, Motohashi H, Yamamoto M. 2012. The Keap1-Nrf2 system in cancers: stress response and anabolic metabolism. Front. Oncol. 2:200. http://dx.doi.org/10.3389/fonc.2012.00200.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.