229
Views
109
CrossRef citations to date
0
Altmetric
Minireview

The Capable ABL: What Is Its Biological Function?

Pages 1188-1197 | Published online: 20 Mar 2023

REFERENCES

  • Colicelli J. 2010. ABL tyrosine kinases: evolution of function, regulation, and specificity. Sci. Signal. 3:re6. http://dx.doi.org/10.1126/scisignal.3139re6.
  • Greuber EK, Smith-Pearson P, Wang J, Pendergast AM. 2013. Role of ABL family kinases in cancer: from leukaemia to solid tumours. Nat. Rev. Cancer 13:559–571. http://dx.doi.org/10.1038/nrc3563.
  • McWhirter JR, Wang JY. 1991. Activation of tyrosinase kinase and microfilament-binding functions of c-abl by bcr sequences in bcr/abl fusion proteins. Mol. Cell. Biol. 11:1553–1565.
  • McWhirter JR, Wang JY. 1993. An actin-binding function contributes to transformation by the Bcr-Abl oncoprotein of Philadelphia chromosome-positive human leukemias. EMBO J. 12:1533–1546.
  • Nagar B, Hantschel O, Young MA, Scheffzek K, Veach D, Bornmann W, Clarkson B, Superti-Furga G, Kuriyan J. 2003. Structural basis for the autoinhibition of c-Abl tyrosine kinase. Cell 112:859–871. http://dx.doi.org/10.1016/S0092-8674(03)00194-6.
  • Hantschel O, Wiesner S, Guttler T, Mackereth CD, Rix LL, Mikes Z, Dehne J, Gorlich D, Sattler M, Superti-Furga G. 2005. Structural basis for the cytoskeletal association of Bcr-Abl/c-Abl. Mol. Cell 19:461–473. http://dx.doi.org/10.1016/j.molcel.2005.06.030.
  • Wen ST, Jackson PK, Van Etten RA. 1996. The cytostatic function of c-Abl is controlled by multiple nuclear localization signals and requires the p53 and Rb tumor suppressor gene products. EMBO J. 15:1583–1595.
  • Miao YJ, Wang JY. 1996. Binding of A/T-rich DNA by three high mobility group-like domains in c-Abl tyrosine kinase. J. Biol. Chem. 271:22823–22830. http://dx.doi.org/10.1074/jbc.271.37.22823.
  • Yoshida K, Yamaguchi T, Natsume T, Kufe D, Miki Y. 2005. JNK phosphorylation of 14-3-3 proteins regulates nuclear targeting of c-Abl in the apoptotic response to DNA damage. Nat. Cell Biol. 7:278–285. http://dx.doi.org/10.1038/ncb1228.
  • Preyer M, Shu CW, Wang JY. 2007. Delayed activation of Bax by DNA damage in embryonic stem cells with knock-in mutations of the Abl nuclear localization signals. Cell Death Differentiation 14:1139–1148. http://dx.doi.org/10.1038/sj.cdd.4402119.
  • Vigneri P, Wang JY. 2001. Induction of apoptosis in chronic myelogenous leukemia cells through nuclear entrapment of BCR-ABL tyrosine kinase. Nat. Med. 7:228–234. http://dx.doi.org/10.1038/84683.
  • Preyer M, Vigneri P, Wang JY. 2011. Interplay between kinase domain autophosphorylation and F-actin binding domain in regulating imatinib sensitivity and nuclear import of BCR-ABL. PLoS One 6:e17020. http://dx.doi.org/10.1371/journal.pone.0017020.
  • Taagepera S, McDonald D, Loeb JE, Whitaker LL, McElroy AK, Wang JY, Hope TJ. 1998. Nuclear-cytoplasmic shuttling of C-ABL tyrosine kinase. Proc. Natl. Acad. Sci. U. S. A. 95:7457–7462. http://dx.doi.org/10.1073/pnas.95.13.7457.
  • Lewis JM, Baskaran R, Taagepera S, Schwartz MA, Wang JY. 1996. Integrin regulation of c-Abl tyrosine kinase activity and cytoplasmic-nuclear transport. Proc. Natl. Acad. Sci. U. S. A. 93:15174–15179. http://dx.doi.org/10.1073/pnas.93.26.15174.
  • Simon DN, Wilson KL. 2011. The nucleoskeleton as a genome-associated dynamic ‘network of networks.’ Nat. Rev. Mol. Cell Biol. 12:695–708. http://dx.doi.org/10.1038/nrm3207.
  • Tybulewicz VL, Crawford CE, Jackson PK, Bronson RT, Mulligan RC. 1991. Neonatal lethality and lymphopenia in mice with a homozygous disruption of the c-abl proto-oncogene. Cell 65:1153–1163. http://dx.doi.org/10.1016/0092-8674(91)90011-M.
  • Schwartzberg PL, Stall AM, Hardin JD, Bowdish KS, Humaran T, Boast S, Harbison ML, Robertson EJ, Goff SP. 1991. Mice homozygous for the ablm1 mutation show poor viability and depletion of selected B and T cell populations. Cell 65:1165–1175. http://dx.doi.org/10.1016/0092-8674(91)90012-N.
  • Koleske AJ, Gifford AM, Scott ML, Nee M, Bronson RT, Miczek KA, Baltimore D. 1998. Essential roles for the Abl and Arg tyrosine kinases in neurulation. Neuron 21:1259–1272. http://dx.doi.org/10.1016/S0896-6273(00)80646-7.
  • Druker BJ. 2008. Translation of the Philadelphia chromosome into therapy for CML. Blood 112:4808–4817. http://dx.doi.org/10.1182/blood-2008-07-077958.
  • Berman E, Girotra M, Cheng C, Chanel S, Maki R, Shelat M, Strauss HW, Fleisher M, Heller G, Farooki A. 2013. Effect of long term imatinib on bone in adults with chronic myelogenous leukemia and gastrointestinal stromal tumors. Leuk. Res. 37:790–794. http://dx.doi.org/10.1016/j.leukres.2013.02.005.
  • Ghosh-Choudhury N, Mandal CC, Das F, Ganapathy S, Ahuja S, Ghosh Choudhury G. 2013. c-Abl-dependent molecular circuitry involving Smad5 and phosphatidylinositol 3-kinase regulates bone morphogenetic protein-2-induced osteogenesis. J. Biol. Chem. 288:24503–24517. http://dx.doi.org/10.1074/jbc.M113.455733.
  • Kua HY, Liu H, Leong WF, Li L, Jia D, Ma G, Hu Y, Wang X, Chau JF, Chen YG, Mishina Y, Boast S, Yeh J, Xia L, Chen GQ, He L, Goff SP, Li B. 2012. c-Abl promotes osteoblast expansion by differentially regulating canonical and non-canonical BMP pathways and p16INK4a expression. Nat. Cell Biol. 14:727–737. http://dx.doi.org/10.1038/ncb2528.
  • Chen X, Zhang J, Lee J, Lin PS, Ford JM, Zheng N, Zhou P. 2006. A kinase-independent function of c-Abl in promoting proteolytic destruction of damaged DNA binding proteins. Mol. Cell 22:489–499. http://dx.doi.org/10.1016/j.molcel.2006.04.021.
  • Shaul Y, Ben-Yehoyada M. 2005. Role of c-Abl in the DNA damage stress response. Cell Res. 15:33–35. http://dx.doi.org/10.1038/sj.cr.7290261.
  • Schlatterer SD, Acker CM, Davies P. 2011. c-Abl in neurodegenerative disease. J. Mol. Neurosci. 45:445–452. http://dx.doi.org/10.1007/s12031-011-9588-1.
  • Ren R, Mayer BJ, Cicchetti P, Baltimore D. 1993. Identification of a ten-amino acid proline-rich SH3 binding site. Science 259:1157–1161. http://dx.doi.org/10.1126/science.8438166.
  • Hou T, Chen K, McLaughlin WA, Lu B, Wang W. 2006. Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. PLoS Comput. Biol. 2:e1. http://dx.doi.org/10.1371/journal.pcbi.0020001.
  • Hantschel O, Superti-Furga G. 2004. Regulation of the c-Abl and Bcr-Abl tyrosine kinases. Nat. Rev. Mol. Cell Biol. 5:33–44. http://dx.doi.org/10.1038/nrm1280.
  • Sicheri F, Moarefi I, Kuriyan J. 1997. Crystal structure of the Src family tyrosine kinase Hck. Nature 385:602–609. http://dx.doi.org/10.1038/385602a0.
  • Xu W, Harrison SC, Eck MJ. 1997. Three-dimensional structure of the tyrosine kinase c-Src. Nature 385:595–602. http://dx.doi.org/10.1038/385595a0.
  • Moarefi I, LaFevre-Bernt M, Sicheri F, Huse M, Lee CH, Kuriyan J, Miller WT. 1997. Activation of the Src-family tyrosine kinase Hck by SH3 domain displacement. Nature 385:650–653. http://dx.doi.org/10.1038/385650a0.
  • Xu W, Doshi A, Lei M, Eck MJ, Harrison SC. 1999. Crystal structures of c-Src reveal features of its autoinhibitory mechanism. Mol. Cell 3:629–638. http://dx.doi.org/10.1016/S1097-2765(00)80356-1.
  • Woodring PJ, Hunter T, Wang JY. 2001. Inhibition of c-Abl tyrosine kinase activity by filamentous actin. J. Biol. Chem. 276:27104–27110. http://dx.doi.org/10.1074/jbc.M100559200.
  • Wang JY. 2004. Controlling Abl: auto-inhibition and co-inhibition? Nat. Cell Biol. 6:3–7. http://dx.doi.org/10.1038/ncb0104-3.
  • Levinson NM, Kuchment O, Shen K, Young MA, Koldobskiy M, Karplus M, Cole PA, Kuriyan J. 2006. A Src-like inactive conformation in the abl tyrosine kinase domain. PLoS Biol. 4:e144. http://dx.doi.org/10.1371/journal.pbio.0040144.
  • Welch PJ, Wang JY. 1993. A C-terminal protein-binding domain in the retinoblastoma protein regulates nuclear c-Abl tyrosine kinase in the cell cycle. Cell 75:779–790. http://dx.doi.org/10.1016/0092-8674(93)90497-E.
  • Guo XY, Balague C, Wang T, Randhawa G, Yuan Z, Bachier C, Greenberger J, Arlinghaus R, Kufe D, Deisseroth AB. 1999. The presence of the Rb c-box peptide in the cytoplasm inhibits p210bcr-abl transforming function. Oncogene 18:1589–1595. http://dx.doi.org/10.1038/sj.onc.1202479.
  • Macdonald JI, Dick FA. 2012. Posttranslational modifications of the retinoblastoma tumor suppressor protein as determinants of function. Genes Cancer 3:619–633. http://dx.doi.org/10.1177/1947601912473305.
  • Knudsen ES, Wang JY. 1996. Differential regulation of retinoblastoma protein function by specific Cdk phosphorylation sites. J. Biol. Chem. 271:8313–8320. http://dx.doi.org/10.1074/jbc.271.14.8313.
  • McWhirter JR, Galasso DL, Wang JY. 1993. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Mol. Cell. Biol. 13:7587–7595.
  • Hantschel O, Nagar B, Guettler S, Kretzschmar J, Dorey K, Kuriyan J, Superti-Furga G. 2003. A myristoyl/phosphotyrosine switch regulates c-Abl. Cell 112:845–857. http://dx.doi.org/10.1016/S0092-8674(03)00191-0.
  • Brasher BB, Van Etten RA. 2000. c-Abl has high intrinsic tyrosine kinase activity that is stimulated by mutation of the Src homology 3 domain and by autophosphorylation at two distinct regulatory tyrosines. J. Biol. Chem. 275:35631–35637. http://dx.doi.org/10.1074/jbc.M005401200.
  • Shi Y, Alin K, Goff SP. 1995. Abl-interactor-1, a novel SH3 protein binding to the carboxy-terminal portion of the Abl protein, suppresses v-abl transforming activity. Genes Dev. 9:2583–2597. http://dx.doi.org/10.1101/gad.9.21.2583.
  • Dai Z, Pendergast AM. 1995. Abi-2, a novel SH3-containing protein interacts with the c-Abl tyrosine kinase and modulates c-Abl transforming activity. Genes Dev. 9:2569–2582. http://dx.doi.org/10.1101/gad.9.21.2569.
  • Ren R, Ye ZS, Baltimore D. 1994. Abl protein-tyrosine kinase selects the Crk adapter as a substrate using SH3-binding sites. Genes Dev. 8:783–795. http://dx.doi.org/10.1101/gad.8.7.783.
  • Alexandropoulos K, Baltimore D. 1996. Coordinate activation of c-Src by SH3- and SH2-binding sites on a novel p130Cas-related protein, Sin. Genes Dev. 10:1341–1355. http://dx.doi.org/10.1101/gad.10.11.1341.
  • Filippakopoulos P, Kofler M, Hantschel O, Gish GD, Grebien F, Salah E, Neudecker P, Kay LE, Turk BE, Superti-Furga G, Pawson T, Knapp S. 2008. Structural coupling of SH2-kinase domains links Fes and Abl substrate recognition and kinase activation. Cell 134:793–803. http://dx.doi.org/10.1016/j.cell.2008.07.047.
  • Welch PJ, Wang JY. 1995. Disruption of retinoblastoma protein function by coexpression of its C pocket fragment. Genes Dev. 9:31–46. http://dx.doi.org/10.1101/gad.9.1.31.
  • Mendoza MC. 2013. Phosphoregulation of the WAVE regulatory complex and signal integration. Semin. Cell Dev. Biol. 24:272–279. http://dx.doi.org/10.1016/j.semcdb.2013.01.007.
  • Bisi S, Disanza A, Malinverno C, Frittoli E, Palamidessi A, Scita G. 2013. Membrane and actin dynamics interplay at lamellipodia leading edge. Curr. Opin. Cell Biol. 25:565–573. http://dx.doi.org/10.1016/j.ceb.2013.04.001.
  • Woodring PJ, Hunter T, Wang JY. 2003. Regulation of F-actin-dependent processes by the Abl family of tyrosine kinases. J. Cell Sci. 116:2613–2626. http://dx.doi.org/10.1242/jcs.00622.
  • Rotty JD, Wu C, Bear JE. 2013. New insights into the regulation and cellular functions of the ARP2/3 complex. Nat. Rev. Mol. Cell Biol. 14:7–12. http://dx.doi.org/10.1038/nrm3492.
  • Tanos B, Pendergast AM. 2006. Abl tyrosine kinase regulates endocytosis of the epidermal growth factor receptor. J. Biol. Chem. 281:32714–32723. http://dx.doi.org/10.1074/jbc.M603126200.
  • Yogalingam G, Pendergast AM. 2008. Abl kinases regulate autophagy by promoting the trafficking and function of lysosomal components. J. Biol. Chem. 283:35941–35953. http://dx.doi.org/10.1074/jbc.M804543200.
  • Hebron ML, Lonskaya I, Moussa CE. 2013. Tyrosine kinase inhibition facilitates autophagic SNCA/alpha-synuclein clearance. Autophagy 9:1249–1250. http://dx.doi.org/10.4161/auto.25368.
  • Huang Y, Comiskey EO, Dupree RS, Li S, Koleske AJ, Burkhardt JK. 2008. The c-Abl tyrosine kinase regulates actin remodeling at the immune synapse. Blood 112:111–119. http://dx.doi.org/10.1182/blood-2007-10-118232.
  • Perez de Arce K, Varela-Nallar L, Farias O, Cifuentes A, Bull P, Couch BA, Koleske AJ, Inestrosa NC, Alvarez AR. 2010. Synaptic clustering of PSD-95 is regulated by c-Abl through tyrosine phosphorylation. J. Neurosci. 30:3728–3738. http://dx.doi.org/10.1523/JNEUROSCI.2024-09.2010.
  • Swimm A, Bommarius B, Li Y, Cheng D, Reeves P, Sherman M, Veach D, Bornmann W, Kalman D. 2004. Enteropathogenic Escherichia coli use redundant tyrosine kinases to form actin pedestals. Mol. Biol. Cell 15:3520–3529. http://dx.doi.org/10.1091/mbc.E04-02-0093.
  • Baskaran R, Dahmus ME, Wang JY. 1993. Tyrosine phosphorylation of mammalian RNA polymerase II carboxyl-terminal domain. Proc. Natl. Acad. Sci. U. S. A. 90:11167–11171. http://dx.doi.org/10.1073/pnas.90.23.11167.
  • Buratowski S. 2003. The CTD code. Nat. Struct. Biol. 10:679–680. http://dx.doi.org/10.1038/nsb0903-679.
  • Mayer A, Heidemann M, Lidschreiber M, Schreieck A, Sun M, Hintermair C, Kremmer E, Eick D, Cramer P. 2012. CTD tyrosine phosphorylation impairs termination factor recruitment to RNA polymerase II. Science 336:1723–1725. http://dx.doi.org/10.1126/science.1219651.
  • Kaidi A, Jackson SP. 2013. KAT5 tyrosine phosphorylation couples chromatin sensing to ATM signalling. Nature 498:70–74. http://dx.doi.org/10.1038/nature12201.
  • Jiang Z, Kamath R, Jin S, Balasubramani M, Pandita TK, Rajasekaran B. 2011. Tip60-mediated acetylation activates transcription independent apoptotic activity of Abl. Mol. Cancer 10:88. http://dx.doi.org/10.1186/1476-4598-10-88.
  • Baskaran R, Wood LD, Whitaker LL, Canman CE, Morgan SE, Xu Y, Barlow C, Baltimore D, Wynshaw-Boris A, Kastan MB, Wang JY. 1997. Ataxia telangiectasia mutant protein activates c-Abl tyrosine kinase in response to ionizing radiation. Nature 387:516–519. http://dx.doi.org/10.1038/387516a0.
  • Shafman T, Khanna KK, Kedar P, Spring K, Kozlov S, Yen T, Hobson K, Gatei M, Zhang N, Watters D, Egerton M, Shiloh Y, Kharbanda S, Kufe D, Lavin MF. 1997. Interaction between ATM protein and c-Abl in response to DNA damage. Nature 387:520–523. http://dx.doi.org/10.1038/387520a0.
  • Liu W, Wu J, Xiao L, Bai Y, Qu A, Zheng Z, Yuan Z. 2012. Regulation of neuronal cell death by c-Abl-Hippo/MST2 signaling pathway. PLoS One 7:e36562. http://dx.doi.org/10.1371/journal.pone.0036562.
  • Levy D, Adamovich Y, Reuven N, Shaul Y. 2008. Yap1 phosphorylation by c-Abl is a critical step in selective activation of proapoptotic genes in response to DNA damage. Mol. Cell 29:350–361. http://dx.doi.org/10.1016/j.molcel.2007.12.022.
  • Matsumura S, Hamasaki M, Yamamoto T, Ebisuya M, Sato M, Nishida E, Toyoshima F. 2012. ABL1 regulates spindle orientation in adherent cells and mammalian skin. Nat. Commun. 3:626. http://dx.doi.org/10.1038/ncomms1634.
  • de Vries RL, Przedborski S. 2013. Mitophagy and Parkinson's disease: be eaten to stay healthy. Mol. Cell. Neurosci. 55:37–43. http://dx.doi.org/10.1016/j.mcn.2012.07.008.
  • Ko HS, Lee Y, Shin JH, Karuppagounder SS, Gadad BS, Koleske AJ, Pletnikova O, Troncoso JC, Dawson VL, Dawson TM. 2010. Phosphorylation by the c-Abl protein tyrosine kinase inhibits parkin's ubiquitination and protective function. Proc. Natl. Acad. Sci. U. S. A. 107:16691–16696. http://dx.doi.org/10.1073/pnas.1006083107.
  • Qiu Z, Cang Y, Goff SP. 2010. Abl family tyrosine kinases are essential for basement membrane integrity and cortical lamination in the cerebellum. J. Neurosci. 30:14430–14439. http://dx.doi.org/10.1523/JNEUROSCI.2861-10.2010.
  • Chislock EM, Ring C, Pendergast AM. 2013. Abl kinases are required for vascular function, Tie2 expression, and angiopoietin-1-mediated survival. Proc. Natl. Acad. Sci. U. S. A. 110:12432–12437. http://dx.doi.org/10.1073/pnas.1304188110.
  • Gu JJ, Lavau CP, Pugacheva E, Soderblom EJ, Moseley MA, Pendergast AM. 2012. Abl family kinases modulate T cell-mediated inflammation and chemokine-induced migration through the adaptor HEF1 and the GTPase Rap1. Sci. Signal. 5:ra51. http://dx.doi.org/10.1126/scisignal.2002632.
  • Gu JJ, Ryu JR, Pendergast AM. 2009. Abl tyrosine kinases in T-cell signaling. Immunol. Rev. 228:170–183. http://dx.doi.org/10.1111/j.1600-065X.2008.00751.x.
  • Cleary RA, Wang R, Wang T, Tang DD. 2013. Role of Abl in airway hyperresponsiveness and airway remodeling. Respir. Res. 14:105. http://dx.doi.org/10.1186/1465-9921-14-105.
  • Innocenzi A, Latella L, Messina G, Simonatto M, Marullo F, Berghella L, Poizat C, Shu CW, Wang JY, Puri PL, Cossu G. 2011. An evolutionarily acquired genotoxic response discriminates MyoD from Myf5, and differentially regulates hypaxial and epaxial myogenesis. EMBO Rep. 12:164–171. http://dx.doi.org/10.1038/embor.2010.195.
  • Imam SZ, Trickler W, Kimura S, Binienda ZK, Paule MG, Slikker WJr, Li S, Clark RA, Ali SF. 2013. Neuroprotective efficacy of a new brain-penetrating C-Abl inhibitor in a murine Parkinson's disease model. PLoS One 8:e65129. http://dx.doi.org/10.1371/journal.pone.0065129.
  • Sridevi P, Nhiayi MK, Wang JY. 2013. Genetic disruption of Abl nuclear import reduces renal apoptosis in a mouse model of cisplatin-induced nephrotoxicity. Cell Death Differentiation 20:953–962. http://dx.doi.org/10.1038/cdd.2013.42.
  • Takao N, Mori R, Kato H, Shinohara A, Yamamoto K. 2000. c-Abl tyrosine kinase is not essential for ataxia telangiectasia mutated functions in chromosomal maintenance. J. Biol. Chem. 275:725–728. http://dx.doi.org/10.1074/jbc.275.2.725.
  • Wang JY, Cho SK. 2004. Coordination of repair, checkpoint, and cell death responses to DNA damage. Adv. Protein Chem. 69:101–135. http://dx.doi.org/10.1016/S0065-3233(04)69004-8.
  • Ryoo HD, Bergmann A. 2012. The role of apoptosis-induced proliferation for regeneration and cancer. Cold Spring Harb. Perspect. Biol. 4:a008797. http://dx.doi.org/10.1101/cshperspect.a008797.
  • Xu J, Escamilla J, Mok S, David J, Priceman S, West B, Bollag G, McBride W, Wu L. 2013. CSF1R signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 73:2782–2794. http://dx.doi.org/10.1158/0008-5472.CAN-12-3981.
  • Hikisz P, Kilianska ZM. 2012. PUMA, a critical mediator of cell death—one decade on from its discovery. Cell. Mol. Biol. Lett. 17:646–669. http://dx.doi.org/10.2478/s11658-012-0032-5.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.