29
Views
20
CrossRef citations to date
0
Altmetric
Article

Competition between Decapping Complex Formation and Ubiquitin-Mediated Proteasomal Degradation Controls Human Dcp2 Decapping Activity

, , , , , & show all
Pages 2144-2153 | Received 24 Dec 2014, Accepted 02 Apr 2015, Published online: 20 Mar 2023

REFERENCES

  • Lewis JD, Izaurralde E. 1997. The role of the cap structure in RNA processing and nuclear export. Eur J Biochem 247:461–469. http://dx.doi.org/10.1111/j.1432-1033.1997.00461.x.
  • Cougot N, van Dijk E, Babajko S, Seraphin B. 2004. ‘Cap-tabolism.’ Trends Biochem Sci 29:436–444. http://dx.doi.org/10.1016/j.tibs.2004.06.008.
  • Franks TM, Lykke-Andersen J. 2008. The control of mRNA decapping and P-body formation. Mol Cell 32:605–615. http://dx.doi.org/10.1016/j.molcel.2008.11.001.
  • Coller J, Parker R. 2004. Eukaryotic mRNA decapping. Annu Rev Biochem 73:861–890. http://dx.doi.org/10.1146/annurev.biochem.73.011303.074032.
  • Eulalio A, Behm-Ansmant I, Izaurralde E. 2007. P bodies: at the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol 8:9–22. http://dx.doi.org/10.1038/nrm2080.
  • Simon E, Camier S, Seraphin B. 2006. New insights into the control of mRNA decapping. Trends Biochem Sci 31:241–243. http://dx.doi.org/10.1016/j.tibs.2006.03.001.
  • Lykke-Andersen J. 2002. Identification of a human decapping complex associated with hUpf proteins in nonsense-mediated decay. Mol Cell Biol 22:8114–8121. http://dx.doi.org/10.1128/MCB.22.23.8114-8121.2002.
  • van Dijk E, Cougot N, Meyer S, Babajko S, Wahle E, Seraphin B. 2002. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J 21:6915–6924. http://dx.doi.org/10.1093/emboj/cdf678.
  • Wang Z, Jiao X, Carr-Schmid A, Kiledjian M. 2002. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc Natl Acad Sci U S A 99:12663–12668. http://dx.doi.org/10.1073/pnas.192445599.
  • Cohen LS, Mikhli C, Jiao X, Kiledjian M, Kunkel G, Davis RE. 2005. Dcp2 decaps m2,2,7GpppN-capped RNAs, and its activity is sequence and context dependent. Mol Cell Biol 25:8779–8791. http://dx.doi.org/10.1128/MCB.25.20.8779-8791.2005.
  • Xu J, Yang JY, Niu QW, Chua NH. 2006. Arabidopsis DCP2, DCP1, and VARICOSE form a decapping complex required for postembryonic development. Plant Cell 18:3386–3398. http://dx.doi.org/10.1105/tpc.106.047605.
  • Iwasaki S, Takeda A, Motose H, Watanabe Y. 2007. Characterization of Arabidopsis decapping proteins AtDCP1 and AtDCP2, which are essential for post-embryonic development. FEBS Lett 581:2455–2459. http://dx.doi.org/10.1016/j.febslet.2007.04.051.
  • Dunckley T, Parker R. 1999. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J 18:5411–5422. http://dx.doi.org/10.1093/emboj/18.19.5411.
  • Beelman CA, Stevens A, Caponigro G, LaGrandeur TE, Hatfield L, Fortner DM, Parker R. 1996. An essential component of the decapping enzyme required for normal rates of mRNA turnover. Nature 382:642–646. http://dx.doi.org/10.1038/382642a0.
  • Deshmukh MV, Jones BN, Quang-Dang DU, Flinders J, Floor SN, Kim C, Jemielity J, Kalek M, Darzynkiewicz E, Gross JD. 2008. mRNA decapping is promoted by an RNA-binding channel in Dcp2. Mol Cell 29:324–336. http://dx.doi.org/10.1016/j.molcel.2007.11.027.
  • She M, Decker CJ, Svergun DI, Round A, Chen N, Muhlrad D, Parker R, Song H. 2008. Structural basis of Dcp2 recognition and activation by Dcp1. Mol Cell 29:337–349. http://dx.doi.org/10.1016/j.molcel.2008.01.002.
  • Floor SN, Jones BN, Hernandez GA, Gross JD. 2010. A split active site couples cap recognition by Dcp2 to activation. Nat Struct Mol Biol 17:1096–1101. http://dx.doi.org/10.1038/nsmb.1879.
  • Yu JH, Yang WH, Gulick T, Bloch KD, Bloch DB. 2005. Ge-1 is a central component of the mammalian cytoplasmic mRNA processing body. RNA 11:1795–1802. http://dx.doi.org/10.1261/rna.2142405.
  • Fenger-Grøn M, Fillman C, Norrild B, Lykke-Andersen J. 2005. Multiple processing body factors and the ARE binding protein TTP activate mRNA decapping. Mol Cell 20:905–915. http://dx.doi.org/10.1016/j.molcel.2005.10.031.
  • Chang CT, Bercovich N, Loh B, Jonas S, Izaurralde E. 2014. The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1. Nucleic Acids Res 42:5217–5233. http://dx.doi.org/10.1093/nar/gku129.
  • Schwartz D, Decker CJ, Parker R. 2003. The enhancer of decapping proteins, Edc1p and Edc2p, bind RNA and stimulate the activity of the decapping enzyme. RNA 9:239–251. http://dx.doi.org/10.1261/rna.2171203.
  • Steiger M, Carr-Schmid A, Schwartz DC, Kiledjian M, Parker R. 2003. Analysis of recombinant yeast decapping enzyme. RNA 9:231–238. http://dx.doi.org/10.1261/rna.2151403.
  • Decker CJ, Teixeira D, Parker R. 2007. Edc3p and a glutamine/asparagine-rich domain of Lsm4p function in processing body assembly in Saccharomyces cerevisiae. J Cell Biol 179:437–449. http://dx.doi.org/10.1083/jcb.200704147.
  • Nissan T, Rajyaguru P, She M, Song H, Parker R. 2010. Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Mol Cell 39:773–783. http://dx.doi.org/10.1016/j.molcel.2010.08.025.
  • Borja MS, Piotukh K, Freund C, Gross JD. 2011. Dcp1 links coactivators of mRNA decapping to Dcp2 by proline recognition. RNA 17:278–290. http://dx.doi.org/10.1261/rna.2382011.
  • Fromm SA, Truffault V, Kamenz J, Braun JE, Hoffmann NA, Izaurralde E, Sprangers R. 2012. The structural basis of Edc3- and Scd6-mediated activation of the Dcp1:Dcp2 mRNA decapping complex. EMBO J 31:279–290. http://dx.doi.org/10.1038/emboj.2011.408.
  • Holmes LEA, Campbell SG, De Long SK, Sachs AB, Ashe MP. 2004. Loss of translational control in yeast compromised for the major mRNA decay pathway. Mol Cell Biol 24:2998–3010. http://dx.doi.org/10.1128/MCB.24.7.2998-3010.2004.
  • Coller J, Parker R. 2005. General translational repression by activators of mRNA decapping. Cell 122:875–886. http://dx.doi.org/10.1016/j.cell.2005.07.012.
  • Pilkington GR, Parker R. 2008. Pat1 contains distinct functional domains that promote P-body assembly and activation of decapping. Mol Cell Biol 28:1298–1312. http://dx.doi.org/10.1128/MCB.00936-07.
  • Lykke-Andersen J, Shu MD, Steitz JA. 2000. Human Upf proteins target an mRNA for nonsense-mediated decay when bound downstream of a termination codon. Cell 103:1121–1131. http://dx.doi.org/10.1016/S0092-8674(00)00214-2.
  • Lykke-Andersen J, Wagner E. 2005. Recruitment and activation of mRNA decay enzymes by two ARE-mediated decay activation domains in the proteins TTP and BRF-1. Genes Dev 19:351–361. http://dx.doi.org/10.1101/gad.1282305.
  • Singh G, Jakob S, Kleedehn MG, Lykke-Andersen J. 2007. Communication with the exon-junction complex and activation of nonsense-mediated decay by human Upf proteins occur in the cytoplasm. Mol Cell 27:780–792. http://dx.doi.org/10.1016/j.molcel.2007.06.030.
  • Gallouzi IE, Brennan CM, Stenberg MG, Swanson MS, Eversole A, Maizels N, Steitz JA. 2000. HuR binding to cytoplasmic mRNA is perturbed by heat shock. Proc Natl Acad Sci U S A 97:3073–3078. http://dx.doi.org/10.1073/pnas.97.7.3073.
  • Song MG, Li Y, Kiledjian M. 2010. Multiple mRNA decapping enzymes in mammalian cells. Mol Cell 40:423–432. http://dx.doi.org/10.1016/j.molcel.2010.10.010.
  • Eberle AB, Lykke-Andersen S, Muhlemann O, Jensen TH. 2009. SMG6 promotes endonucleolytic cleavage of nonsense mRNA in human cells. Nat Struct Mol Biol 16:49–55. http://dx.doi.org/10.1038/nsmb.1530.
  • Popov N, Schulein C, Jaenicke LA, Eilers M. 2010. Ubiquitylation of the amino terminus of Myc by SCF(beta-TrCP) antagonizes SCF(Fbw7)-mediated turnover. Nat Cell Biol 12:973–981. http://dx.doi.org/10.1038/ncb2104.
  • Clement SL, Scheckel C, Stoecklin G, Lykke-Andersen J. 2011. Phosphorylation of tristetraprolin by MK2 impairs AU-rich element mRNA decay by preventing deadenylase recruitment. Mol Cell Biol 31:256–266. http://dx.doi.org/10.1128/MCB.00717-10.
  • Chen CY, Gherzi R, Ong SE, Chan EL, Raijmakers R, Pruijn GJ, Stoecklin G, Moroni C, Mann M, Karin M. 2001. AU binding proteins recruit the exosome to degrade ARE-containing mRNAs. Cell 107:451–464. http://dx.doi.org/10.1016/S0092-8674(01)00578-5.
  • Wang Z, Kiledjian M. 2001. Functional link between the mammalian exosome and mRNA decapping. Cell 107:751–762. http://dx.doi.org/10.1016/S0092-8674(01)00592-X.
  • Mukherjee D, Gao M, O'Connor JP, Raijmakers R, Pruijn G, Lutz CS, Wilusz J. 2002. The mammalian exosome mediates the efficient degradation of mRNAs that contain AU-rich elements. EMBO J 21:165–174. http://dx.doi.org/10.1093/emboj/21.1.165.
  • Ghosh T, Peterson B, Tomasevic N, Peculis BA. 2004. Xenopus U8 snoRNA binding protein is a conserved nuclear decapping enzyme. Mol Cell 13:817–828. http://dx.doi.org/10.1016/S1097-2765(04)00127-3.
  • Li Y, Song M, Kiledjian M. 2011. Differential utilization of decapping enzymes in mammalian mRNA decay pathways. RNA 17:419–428. http://dx.doi.org/10.1261/rna.2439811.
  • Bloch DB, Nobre RA, Bernstein GA, Yang WH. 2011. Identification and characterization of protein interactions in the mammalian mRNA processing body using a novel two-hybrid assay. Exp Cell Res 317:2183–2199. http://dx.doi.org/10.1016/j.yexcr.2011.05.027.
  • Hwang CS, Shemorry A, Varshavsky A. 2010. N-terminal acetylation of cellular proteins creates specific degradation signals. Science 327:973–977. http://dx.doi.org/10.1126/science.1183147.
  • Shemorry A, Hwang CS, Varshavsky A. 2013. Control of protein quality and stoichiometries by N-terminal acetylation and the N-end rule pathway. Mol Cell 50:540–551. http://dx.doi.org/10.1016/j.molcel.2013.03.018.
  • Nagaraj N, Wisniewski JR, Geiger T, Cox J, Kircher M, Kelso J, Paabo S, Mann M. 2011. Deep proteome and transcriptome mapping of a human cancer cell line. Mol Syst Biol 7:548. http://dx.doi.org/10.1038/msb.2011.81.
  • Chen C, Deutscher MP. 2010. RNase R is a highly unstable protein regulated by growth phase and stress. RNA 16:667–672. http://dx.doi.org/10.1261/rna.1981010.
  • Liang W, Deutscher MP. 2010. A novel mechanism for ribonuclease regulation: transfer-messenger RNA (tmRNA) and its associated protein SmpB regulate the stability of RNase R. J Biol Chem 285:29054–29058. http://dx.doi.org/10.1074/jbc.C110.168641.
  • Liang W, Deutscher MP. 2012. Post-translational modification of RNase R is regulated by stress-dependent reduction in the acetylating enzyme Pka (YfiQ). RNA 18:37–41. http://dx.doi.org/10.1261/rna.030213.111.
  • Liang W, Deutscher MP. 2013. Ribosomes regulate the stability and action of the exoribonuclease RNase R. J Biol Chem 288:34791–34798. http://dx.doi.org/10.1074/jbc.M113.519553.
  • Liang W, Malhotra A, Deutscher MP. 2011. Acetylation regulates the stability of a bacterial protein: growth stage-dependent modification of RNase R. Mol Cell 44:160–166. http://dx.doi.org/10.1016/j.molcel.2011.06.037.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.