152
Views
54
CrossRef citations to date
0
Altmetric
Article

The Human RNA Polymerase I Transcription Terminator Complex Acts as a Replication Fork Barrier That Coordinates the Progress of Replication with rRNA Transcription Activity

&
Pages 1871-1881 | Received 26 Dec 2014, Accepted 09 Mar 2015, Published online: 20 Mar 2023

REFERENCES

  • Klein J, Grummt I. 1999. Cell cycle-dependent regulation of RNA polymerase I transcription: the nucleolar transcription factor UBF is inactive in mitosis and early G1. Proc Natl Acad Sci U S A 96:6096–6101. http://dx.doi.org/10.1073/pnas.96.11.6096.
  • Dalgaard JZ, Godfrey EL, MacFarlane RJ. 2011. Eukaryotic replication barriers: how, why and where forks stall, chap 13. In Seligmann H (ed), DNA replication: current advances. InTech, Rijeka, Croatia. http://dx.doi.org/10.5772/20383.
  • Little RD, Platt TH, Schildkraut CL. 1993. Initiation and termination of DNA replication in human rRNA genes. Mol Cell Biol 13:6600–6613.
  • Kobayashi T. 2003. The replication fork barrier site forms a unique structure with Fob1p and inhibits the replication fork. Mol Cell Biol 23:9178–9188. http://dx.doi.org/10.1128/MCB.23.24.9178-9188.2003.
  • Kobayashi T. 2011. Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cell Mol Life Sci 68:1395–1403. http://dx.doi.org/10.1007/s00018-010-0613-2.
  • Kobayashi T, Horiuchi T. 1996. A yeast gene product, Fob1 protein, required for both replication fork blocking and recombinational hotspot activities. Genes Cells 1:465–474. http://dx.doi.org/10.1046/j.1365-2443.1996.d01-256.x.
  • Kobayashi T, Heck DJ, Nomura M, Horiuchi T. 1998. Expansion and contraction of ribosomal DNA repeats in Saccharomyces cerevisiae: requirement of replication fork blocking (Fob1) protein and the role of RNA polymerase I. Genes Dev 12:3821–3830. http://dx.doi.org/10.1101/gad.12.24.3821.
  • Defossez PA, Prusty R, Kaeberlein M, Lin SJ, Ferrigno P, Silver PA, Keil RL, Guarente L. 1999. Elimination of replication block protein Fob1 extends the life span of yeast mother cells. Mol Cell 3:447–455. http://dx.doi.org/10.1016/S1097-2765(00)80472-4.
  • Kaeberlein M, McVey M, Guarente L. 1999. The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev 13:2570–2580. http://dx.doi.org/10.1101/gad.13.19.2570.
  • Weitao T, Budd M, Hoopes LL, Campbell JL. 2003. Dna2 helicase/nuclease causes replicative fork stalling and double-strand breaks in the ribosomal DNA of Saccharomyces cerevisiae. J Biol Chem 278:22513–22522. http://dx.doi.org/10.1074/jbc.M301610200.
  • Burkhalter MD, Sogo JM. 2004. rDNA enhancer affects replication initiation and mitotic recombination: Fob1 mediates nucleolytic processing independently of replication. Mol Cell 15:409–421. http://dx.doi.org/10.1016/j.molcel.2004.06.024.
  • Takeuchi Y, Horiuchi T, Kobayashi T. 2003. Transcription-dependent recombination and the role of fork collision in yeast rDNA. Genes Dev 17:1497–1506. http://dx.doi.org/10.1101/gad.1085403.
  • Grummt I, Maier U, Ohrlein A, Hassouna N, Bachellerie JP. 1985. Transcription of mouse rDNA terminates downstream of the 3′ end of 28S RNA and involves interaction of factors with repeated sequences in the 3′ spacer. Cell 43:801–810. http://dx.doi.org/10.1016/0092-8674(85)90253-3.
  • Grummt I, Rosenbauer H, Niedermeyer I, Maier U, Ohrlein A. 1986. A repeated 18 bp sequence motif in the mouse rDNA spacer mediates binding of a nuclear factor and transcription termination. Cell 45:837–846. http://dx.doi.org/10.1016/0092-8674(86)90558-1.
  • Bartsch I, Schoneberg C, Grummt I. 1988. Purification and characterization of TTFI, a factor that mediates termination of mouse ribosomal DNA transcription. Mol Cell Biol 8:3891–3897.
  • Evers R, Smid A, Rudloff U, Lottspeich F, Grummt I. 1995. Different domains of the murine RNA polymerase I-specific termination factor mTTF-I serve distinct functions in transcription termination. EMBO J 14:1248–1256.
  • Gerber JK, Gogel E, Berger C, Wallisch M, Muller F, Grummt I, Grummt F. 1997. Termination of mammalian rDNA replication: polar arrest of replication fork movement by transcription termination factor TTF-I. Cell 90:559–567. http://dx.doi.org/10.1016/S0092-8674(00)80515-2.
  • Wallisch M, Kunkel E, Hoehn K, Grummt F. 2002. Ku antigen supports termination of mammalian rDNA replication by transcription termination factor TTF-I. Biol Chem 383:765–771. http://dx.doi.org/10.1515/BC.2002.080.
  • Lopez-estrano C, Schvartzman JB, Krimer DB, Hernandez P. 1998. Co-localization of polar replication fork barriers and rRNA transcription terminators in mouse rDNA. J Mol Biol 277:249–256. http://dx.doi.org/10.1006/jmbi.1997.1607.
  • Bartsch I, Schoneberg C, Grummt I. 1987. Evolutionary changes of sequences and factors that direct transcription termination of human and mouse ribosomal genes. Mol Cell Biol 7:2521–2529.
  • La Volpe A, Simeone A, D'Esposito M, Scotto L, Fidanza V, de Falco A, Boncinelli E. 1985. Molecular analysis of the heterogeneity region of the human ribosomal spacer. J Mol Biol 183:213–223. http://dx.doi.org/10.1016/0022-2836(85)90214-1.
  • Erickson JM, Schmickel RD. 1985. A molecular basis for discrete size variation in human ribosomal DNA. Am J Hum Genet 37:311–325.
  • Lebofsky R, Bensimon A. 2005. DNA replication origin plasticity and perturbed fork progression in human inverted repeats. Mol Cell Biol 25:6789–6797. http://dx.doi.org/10.1128/MCB.25.15.6789-6797.2005.
  • Krings G, Bastia D. 2004. swi1- and swi3-dependent and independent replication fork arrest at the ribosomal DNA of Schizosaccharomyces pombe. Proc Natl Acad Sci U S A 101:14085–14090. http://dx.doi.org/10.1073/pnas.0406037101.
  • Calzada A, Hodgson B, Kanemaki M, Bueno A, Labib K. 2005. Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork. Genes Dev 19:1905–1919. http://dx.doi.org/10.1101/gad.337205.
  • Tourriere H, Versini G, Cordon-Preciado V, Alabert C, Pasero P. 2005. Mrc1 and Tof1 promote replication fork progression and recovery independently of Rad53. Mol Cell 19:699–706. http://dx.doi.org/10.1016/j.molcel.2005.07.028.
  • Mohanty BK, Bairwa NK, Bastia D. 2006. The Tof1p-Csm3p protein complex counteracts the Rrm3p helicase to control replication termination of Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 103:897–902. http://dx.doi.org/10.1073/pnas.0506540103.
  • Foss EJ. 2001. Tof1p regulates DNA damage responses during S phase in Saccharomyces cerevisiae. Genetics 157:567–577.
  • Katou Y, Kanoh Y, Bando M, Noguchi H, Tanaka H, Ashikari T, Sugimoto K, Shirahige K. 2003. S-phase checkpoint proteins Tof1 and Mrc1 form a stable replication-pausing complex. Nature 424:1078–1083. http://dx.doi.org/10.1038/nature01900.
  • Noguchi E, Noguchi C, McDonald WH, Yates JR III, Russell P. 2004. Swi1 and Swi3 are components of a replication fork protection complex in fission yeast. Mol Cell Biol 24:8342–8355. http://dx.doi.org/10.1128/MCB.24.19.8342-8355.2004.
  • Unsal-Kacmaz K, Chastain PD, Qu PP, Minoo P, Cordeiro-Stone M, Sancar A, Kaufmann WK. 2007. The human Tim/Tipin complex coordinates an Intra-S checkpoint response to UV that slows replication fork displacement. Mol Cell Biol 27:3131–3142. http://dx.doi.org/10.1128/MCB.02190-06.
  • Unsal-Kacmaz K, Mullen TE, Kaufmann WK, Sancar A. 2005. Coupling of human circadian and cell cycles by the Timeless protein. Mol Cell Biol 25:3109–3116. http://dx.doi.org/10.1128/MCB.25.8.3109-3116.2005.
  • Chou DM, Elledge SJ. 2006. Tipin and Timeless form a mutually protective complex required for genotoxic stress resistance and checkpoint function. Proc Natl Acad Sci U S A 103:18143–18147. http://dx.doi.org/10.1073/pnas.0609251103.
  • Akamatsu Y, Jasin M. 2010. Role for the mammalian Swi5-Sfr1 complex in DNA strand break repair through homologous recombination. PLoS Genet 6:e1001160. http://dx.doi.org/10.1371/journal.pgen.1001160.
  • Friedman KL, Brewer BJ. 1995. Analysis of replication intermediates by two-dimensional agarose gel electrophoresis. Methods Enzymol 262:613–627. http://dx.doi.org/10.1016/0076-6879(95)62048-6.
  • Ide S, Kobayashi T. 2010. Analysis of DNA replication in Saccharomyces cerevisiae by two-dimensional and pulsed-field gel electrophoresis. Curr Protoc Cell Biol Chapter 22: Unit 22.14. http://dx.doi.org/10.1002/0471143030.cb2214s49.
  • Nawotka KA, Huberman JA. 1988. Two-dimensional gel electrophoretic method for mapping DNA replicons. Mol Cell Biol 8:1408–1413.
  • Moriyama K, Yoshizawa-Sugata N, Obuse C, Tsurimoto T, Masai H. 2012. Epstein-Barr nuclear antigen 1 (EBNA1)-dependent recruitment of origin recognition complex (Orc) on oriP of Epstein-Barr virus with purified proteins: stimulation by Cdc6 through its direct interaction with EBNA1. J Biol Chem 287:23977–23994. http://dx.doi.org/10.1074/jbc.M112.368456.
  • Zhang Y, Jasin M. 2011. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat Struct Mol Biol 18:80–84. http://dx.doi.org/10.1038/nsmb.1940.
  • Frappier L. 2012. EBNA1 and host factors in Epstein-Barr virus latent DNA replication. Curr Opin Virol 2:733–739. http://dx.doi.org/10.1016/j.coviro.2012.09.005.
  • Pfleiderer C, Smid A, Bartsch I, Grummt I. 1990. An undecamer DNA sequence directs termination of human ribosomal gene transcription. Nucleic Acids Res 18:4727–4736. http://dx.doi.org/10.1093/nar/18.16.4727.
  • McStay B, Grummt I. 2008. The epigenetics of rRNA genes: from molecular to chromosome biology. Annu Rev Cell Dev Biol 24:131–157. http://dx.doi.org/10.1146/annurev.cellbio.24.110707.175259.
  • Li J, Santoro R, Koberna K, Grummt I. 2005. The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J 24:120–127. http://dx.doi.org/10.1038/sj.emboj.7600492.
  • Nelson PS, Papas TS, Schweinfest CW. 1993. Restriction endonuclease cleavage of 5-methyl-deoxycytosine hemimethylated DNA at high enzyme-to-substrate ratios. Nucleic Acids Res 21:681–686. http://dx.doi.org/10.1093/nar/21.3.681.
  • An P, Saenz Robles MT, Pipas JM. 2012. Large T antigens of polyomaviruses: amazing molecular machines. Annu Rev Microbiol 66:213–236. http://dx.doi.org/10.1146/annurev-micro-092611-150154.
  • Cho WH, Kang YH, An YY, Tappin I, Hurwitz J, Lee JK. 2013. Human Tim-Tipin complex affects the biochemical properties of the replicative DNA helicase and DNA polymerases. Proc Natl Acad Sci U S A 110:2523–2527. http://dx.doi.org/10.1073/pnas.1222494110.
  • Diermeier SD, Nemeth A, Rehli M, Grummt I, Langst G. 2013. Chromatin-specific regulation of mammalian rDNA transcription by clustered TTF-I binding sites. PLoS Genet 9:e1003786. http://dx.doi.org/10.1371/journal.pgen.1003786.
  • Nemeth A, Guibert S, Tiwari VK, Ohlsson R, Langst G. 2008. Epigenetic regulation of TTF-I-mediated promoter-terminator interactions of rRNA genes. EMBO J 27:1255–1265. http://dx.doi.org/10.1038/emboj.2008.57.
  • Helmrich A, Ballarino M, Nudler E, Tora L. 2013. Transcription-replication encounters, consequences and genomic instability. Nat Struct Mol Biol 20:412–418. http://dx.doi.org/10.1038/nsmb.2543.
  • Stults DM, Killen MW, Shelton BJ, Pierce AJ. 2011. Recombination phenotypes of the NCI-60 collection of human cancer cells. BMC Mol Biol 12:23. http://dx.doi.org/10.1186/1471-2199-12-23.
  • Stults DM, Killen MW, Williamson EP, Hourigan JS, Vargas HD, Arnold SM, Moscow JA, Pierce AJ. 2009. Human rRNA gene clusters are recombinational hotspots in cancer. Cancer Res 69:9096–9104. http://dx.doi.org/10.1158/0008-5472.CAN-09-2680.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.