76
Views
35
CrossRef citations to date
0
Altmetric
Article

Interleukin-1β-Induced Wnt5a Enhances Human Corneal Endothelial Cell Migration through Regulation of Cdc42 and RhoA

&
Pages 3535-3545 | Received 29 Nov 2013, Accepted 02 Jul 2014, Published online: 20 Mar 2023

REFERENCES

  • Joyce NC, Navon SE, Roy S, Zieske JD. 1996. Expression of cell cycle-associated proteins in human and rabbit corneal endothelium in situ. Invest. Ophthalmol. Vis. Sci. 37:1566–1575.
  • Senoo T, Joyce NC. 2000. Cell cycle kinetics in corneal endothelium from old and young donors. Invest. Ophthalmol. Vis. Sci. 41:660–667.
  • Whitcher JP, Srinivasan M, Upadhyay MP. 2001. Corneal blindness: a global perspective. Bull. World Health Organ. 79:214–221.
  • Song JS, Lee JG, Kay EP. 2010. Induction of FGF-2 synthesis by IL-1β in aqueous humor through PI3-kinase and p38 in rabbit corneal endothelium. Invest. Ophthalmol. Vis. Sci. 51:822–829. http://dx.doi.org/10.1167/iovs.09-4240.
  • Djalilian AR, Nagineni CN, Mahesh SP, Smith JA, Nussenblatt RB, Hooks JJ. 2006. Inhibition of inflammatory cytokine production in human corneal cells by dexamethasone, but not cyclosporin. Cornea 25:709–714. http://dx.doi.org/10.1097/01.ico.0000208815.02120.90.
  • Moore JE, McMullen TC, Campbell IL, Rohan R, Kaji Y, Afshari NA, Usui T, Archer DB, Adamis AP. 2002. The inflammatory milieu associated with conjunctivalized cornea and its alteration with IL-1 RA gene therapy. Invest. Ophthalmol. Vis. Sci. 43:2905–2915.
  • Lee JG, Heur M. 2013. Interleukin-1β enhances cell migration through AP-1 and NF-κB pathway-dependent FGF2 expression in human corneal endothelial cells. Biol. Cell 105:175–189. http://dx.doi.org/10.1111/boc.201200077.
  • Lee JG, Kay EP. 2009. Common and distinct pathways for cellular activities in FGF-2 signaling induced by IL-1β in corneal endothelial cells. Invest. Ophthalmol. Vis. Sci. 50:2067–2076. http://dx.doi.org/10.1167/iovs.08-3135.
  • Lee JG, Kay EP. 2012. NF-κB is the transcription factor for FGF-2 that causes endothelial mesenchymal transformation in cornea. Invest. Ophthalmol. Vis. Sci. 53:1530–1538. http://dx.doi.org/10.1167/iovs.11-9102.
  • Lee HT, Lee JG, Na M, Kay EP. 2004. FGF-2 induced by interleukin-1 beta through the action of phosphatidylinositol 3-kinase mediates endothelial mesenchymal transformation in corneal endothelial cells. J. Biol. Chem. 279:32325–32332. http://dx.doi.org/10.1074/jbc.M405208200.
  • Nusse R. 2005. Wnt signaling in disease and in development. Cell Res. 15:28–32. http://dx.doi.org/10.1038/sj.cr.7290260.
  • Angers S, Moon RT. 2009. Proximal events in Wnt signal transduction. Nat. Rev. Mol. Cell Biol. 10:468–477. http://dx.doi.org/10.1038/nrm2717.
  • MacDonald BT, Tamai K, He X. 2009. Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev. Cell 17:9–26. http://dx.doi.org/10.1016/j.devcel.2009.06.016.
  • Huang H, He X. 2008. Wnt/beta-catenin signaling: new (and old) players and new insights. Curr. Opin. Cell Biol. 20:119–125. http://dx.doi.org/10.1016/j.ceb.2008.01.009.
  • Grigoryan T, Wend P, Klaus A, Birchmeier W. 2008. Deciphering the function of canonical Wnt signals in development and disease: conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 22:2308–2341. http://dx.doi.org/10.1101/gad.1686208.
  • Khokhar S, Sethi HS, Sony P, Sudan R, Soni A. 2002. Pseudophakic pupillary block caused by pupillary capture after phacoemulsification and in-the-bag AcrySof lens implantation. J. Cataract Refract. Surg. 28:1291–1292. http://dx.doi.org/10.1016/S0886-3350(02)01305-6.
  • Kimura C, Yoshinaga K, Tian E, Suzuki M, Aizawa S, Matsuo I. 2000. Visceral endoderm mediates forebrain development by suppressing posteriorizing signals. Dev. Biol. 225:304–321. http://dx.doi.org/10.1006/dbio.2000.9835.
  • Kudoh T, Wilson SW, Dawid IB. 2002. Distinct roles for Fgf, Wnt and retinoic acid in posteriorizing the neural ectoderm. Development 129:4335–4346.
  • Heisenberg CP, Brand M, Jiang YJ, Warga RM, Beuchle D, van Eeden FJ, Furutani-Seiki M, Granato M, Haffter P, Hammerschmidt M, Kane DA, Kelsh RN, Mullins MC, Odenthal J, Nusslein-Volhard C. 1996. Genes involved in forebrain development in the zebrafish, Danio rerio. Development 123:191–203.
  • Gage PJ, Qian M, Wu D, Rosenberg KI. 2008. The canonical Wnt signaling antagonist DKK2 is an essential effector of PITX2 function during normal eye development. Dev. Biol. 317:310–324. http://dx.doi.org/10.1016/j.ydbio.2008.02.030.
  • Randall RM, Shao YY, Wang L, Ballock RT. 2012. Activation of Wnt planar cell polarity (PCP) signaling promotes growth plate column formation in vitro. J. Orthop. Res. 30:1906–1914. http://dx.doi.org/10.1002/jor.22152.
  • Dejmek J, Safholm A, Kamp Nielsen C, Andersson T, Leandersson K. 2006. Wnt-5a/Ca2+-induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase 1α signaling in human mammary epithelial cells. Mol. Cell. Biol. 26:6024–6036. http://dx.doi.org/10.1128/MCB.02354-05.
  • Weeraratna AT, Jiang Y, Hostetter G, Rosenblatt K, Duray P, Bittner M, Trent JM. 2002. Wnt5a signaling directly affects cell motility and invasion of metastatic melanoma. Cancer Cell 1:279–288. http://dx.doi.org/10.1016/S1535-6108(02)00045-4.
  • Blumenthal A, Ehlers S, Lauber J, Buer J, Lange C, Goldmann T, Heine H, Brandt E, Reiling N. 2006. The Wingless homolog WNT5A and its receptor Frizzled-5 regulate inflammatory responses of human mononuclear cells induced by microbial stimulation. Blood 108:965–973. http://dx.doi.org/10.1182/blood-2005-12-5046.
  • Takada R, Hijikata H, Kondoh H, Takada S. 2005. Analysis of combinatorial effects of Wnts and Frizzleds on beta-catenin/armadillo stabilization and Dishevelled phosphorylation. Genes Cells 10:919–928. http://dx.doi.org/10.1111/j.1365-2443.2005.00889.x.
  • Nishita M, Itsukushima S, Nomachi A, Endo M, Wang Z, Inaba D, Qiao S, Takada S, Kikuchi A, Minami Y. 2010. Ror2/Frizzled complex mediates Wnt5a-induced AP-1 activation by regulating Dishevelled polymerization. Mol. Cell. Biol. 30:3610–3619. http://dx.doi.org/10.1128/MCB.00177-10.
  • Grumolato L, Liu G, Mong P, Mudbhary R, Biswas R, Arroyave R, Vijayakumar S, Economides AN, Aaronson SA. 2010. Canonical and noncanonical Wnts use a common mechanism to activate completely unrelated coreceptors. Genes Dev. 24:2517–2530. http://dx.doi.org/10.1101/gad.1957710.
  • Nishita M, Yoo SK, Nomachi A, Kani S, Sougawa N, Ohta Y, Takada S, Kikuchi A, Minami Y. 2006. Filopodia formation mediated by receptor tyrosine kinase Ror2 is required for Wnt5a-induced cell migration. J. Cell Biol. 175:555–562. http://dx.doi.org/10.1083/jcb.200607127.
  • Habas R, Kato Y, He X. 2001. Wnt/Frizzled activation of Rho regulates vertebrate gastrulation and requires a novel Formin homology protein Daam1. Cell 107:843–854. http://dx.doi.org/10.1016/S0092-8674(01)00614-6.
  • Aspenstrom P, Richnau N, Johansson AS. 2006. The diaphanous-related formin DAAM1 collaborates with the Rho GTPases RhoA and Cdc42, CIP4 and Src in regulating cell morphogenesis and actin dynamics. Exp. Cell Res. 312:2180–2194. http://dx.doi.org/10.1016/j.yexcr.2006.03.013.
  • Zhu Y, Tian Y, Du J, Hu Z, Yang L, Liu J, Gu L. 2012. Dvl2-dependent activation of Daam1 and RhoA regulates Wnt5a-induced breast cancer cell migration. PLoS One 7:e37823. http://dx.doi.org/10.1371/journal.pone.0037823.
  • Schlessinger K, McManus EJ, Hall A. 2007. Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J. Cell Biol. 178:355–361. http://dx.doi.org/10.1083/jcb.200701083.
  • Habas R, Dawid IB, He X. 2003. Coactivation of Rac and Rho by Wnt/Frizzled signaling is required for vertebrate gastrulation. Genes Dev. 17:295–309. http://dx.doi.org/10.1101/gad.1022203.
  • Chen Y, Huang K, Nakatsu MN, Xue Z, Deng SX, Fan G. 2013. Identification of novel molecular markers through transcriptomic analysis in human fetal and adult corneal endothelial cells. Hum. Mol. Genet. 22:1271–1279. http://dx.doi.org/10.1093/hmg/dds527.
  • Schmitz AA, Govek EE, Bottner B, Van Aelst L. 2000. Rho GTPases: signaling, migration, and invasion. Exp. Cell Res. 261:1–12. http://dx.doi.org/10.1006/excr.2000.5049.
  • Nobes CD, Hall A. 1999. Rho GTPases control polarity, protrusion, and adhesion during cell movement. J. Cell Biol. 144:1235–1244. http://dx.doi.org/10.1083/jcb.144.6.1235.
  • Ridley AJ. 2001. Rho GTPases and cell migration. J. Cell Sci. 114:2713–2722.
  • Huttenlocher A, Sandborg RR, Horwitz AF. 1995. Adhesion in cell migration. Curr. Opin. Cell Biol. 7:697–706. http://dx.doi.org/10.1016/0955-0674(95)80112-X.
  • Maekawa M, Ishizaki T, Boku S, Watanabe N, Fujita A, Iwamatsu A, Obinata T, Ohashi K, Mizuno K, Narumiya S. 1999. Signaling from Rho to the actin cytoskeleton through protein kinases ROCK and LIM-kinase. Science 285:895–898. http://dx.doi.org/10.1126/science.285.5429.895.
  • Sumi T, Matsumoto K, Takai Y, Nakamura T. 1999. Cofilin phosphorylation and actin cytoskeletal dynamics regulated by rho- and Cdc42-activated LIM-kinase 2. J. Cell Biol. 147:1519–1532. http://dx.doi.org/10.1083/jcb.147.7.1519.
  • Sumi T, Matsumoto K, Nakamura T. 2001. Specific activation of LIM kinase 2 via phosphorylation of threonine 505 by ROCK, a Rho-dependent protein kinase. J. Biol. Chem. 276:670–676. http://dx.doi.org/10.1074/jbc.M007074200.
  • Eiseler T, Doppler H, Yan IK, Kitatani K, Mizuno K, Storz P. 2009. Protein kinase D1 regulates cofilin-mediated F-actin reorganization and cell motility through slingshot. Nat. Cell Biol. 11:545–556. http://dx.doi.org/10.1038/ncb1861.
  • Tanegashima K, Zhao H, Dawid IB. 2008. WGEF activates Rho in the Wnt-PCP pathway and controls convergent extension in Xenopus gastrulation. EMBO J. 27:606–617. http://dx.doi.org/10.1038/emboj.2008.9.
  • Ge XP, Gan YH, Zhang CG, Zhou CY, Ma KT, Meng JH, Ma XC. 2011. Requirement of the NF-κB pathway for induction of Wnt-5A by interleukin-1β in condylar chondrocytes of the temporomandibular joint: functional crosstalk between the Wnt-5a and NF-κB signaling pathways. Osteoarthritis Cartilage 19:111–117. http://dx.doi.org/10.1016/j.joca.2010.10.016.
  • Katula KS, Joyner-Powell NB, Hsu CC, Kuk A. 2012. Differential regulation of the mouse and human Wnt5a alternative promoters A and B. DNA Cell Biol. 31:1585–1597. http://dx.doi.org/10.1089/dna.2012.1698.
  • Lee JG, Kay EP. 2006. FGF-2-induced wound healing in corneal endothelial cells requires Cdc42 activation and Rho inactivation through the phosphatidylinositol 3-kinase pathway. Invest. Ophthalmol. Vis. Sci. 47:1376–1386. http://dx.doi.org/10.1167/iovs.05-1223.
  • Garweg JG, Wegmann-Burns M, Goldblum D. 2006. Effects of daunorubicin, mitomycin C, azathioprine and cyclosporin A on human retinal pigmented epithelial, corneal endothelial and conjunctival cell lines. Graefe's Arch. Clin. Exp. Ophthalmol. 244:382–389. http://dx.doi.org/10.1007/s00417-005-0017-4.
  • Lee JG, Kay EP. 2007. Two populations of p27 use differential kinetics to phosphorylate Ser-10 and Thr-187 via phosphatidylinositol 3-kinase in response to fibroblast growth factor-2 stimulation. J. Biol. Chem. 282:6444–6454. http://dx.doi.org/10.1074/jbc.M607808200.
  • Lee JG, Song JS, Smith RE, Kay EP. 2011. Human corneal endothelial cells employ phosphorylation of p27Kip1 at both Ser10 and Thr187 sites for FGF-2-mediated cell proliferation via PI 3-kinase. Invest. Ophthalmol. Vis. Sci. 52:8216–8223. http://dx.doi.org/10.1167/iovs.11-8213.
  • Lee JG, Kay EP. 2006. Cross-talk among Rho GTPases acting downstream of PI 3-kinase induces mesenchymal transformation of corneal endothelial cells mediated by FGF-2. Invest. Ophthalmol. Vis. Sci. 47:2358–2368. http://dx.doi.org/10.1167/iovs.05-1490.
  • Liebner S, Plate KH. 2010. Differentiation of the brain vasculature: the answer came blowing by the Wnt. J. Angiogenesis Res. 2:1. http://dx.doi.org/10.1186/2040-2384-2-1.
  • Ang SF, Zhao ZS, Lim L, Manser E. 2010. DAAM1 is a formin required for centrosome re-orientation during cell migration. PLoS One 5:e13064. http://dx.doi.org/10.1371/journal.pone.0013064.
  • Ko MK, Kay EP. 2005. Regulatory role of FGF-2 on type I collagen expression during endothelial mesenchymal transformation. Invest. Ophthalmol. Vis. Sci. 46:4495–4503. http://dx.doi.org/10.1167/iovs.05-0818.
  • Ge X, Ma X, Meng J, Zhang C, Ma K, Zhou C. 2009. Role of Wnt-5A in interleukin-1β-induced matrix metalloproteinase expression in rabbit temporomandibular joint condylar chondrocytes. Arthritis Rheum. 60:2714–2722. http://dx.doi.org/10.1002/art.24779.
  • Sonomoto K, Yamaoka K, Oshita K, Fukuyo S, Zhang X, Nakano K, Okada Y, Tanaka Y. 2012. Interleukin-1β induces differentiation of human mesenchymal stem cells into osteoblasts via the Wnt-5a/receptor tyrosine kinase-like orphan receptor 2 pathway. Arthritis Rheum. 64:3355–3363. http://dx.doi.org/10.1002/art.34555.
  • Connolly JO, Simpson N, Hewlett L, Hall A. 2002. Rac regulates endothelial morphogenesis and capillary assembly. Mol. Biol. Cell 13:2474–2485. http://dx.doi.org/10.1091/mbc.E02-01-0006.
  • Hall A. 1998. Rho GTPases and the actin cytoskeleton. Science 279:509–514. http://dx.doi.org/10.1126/science.279.5350.509.
  • Yuan XB, Jin M, Xu X, Song YQ, Wu CP, Poo MM, Duan S. 2003. Signalling and crosstalk of Rho GTPases in mediating axon guidance. Nat. Cell Biol. 5:38–45. http://dx.doi.org/10.1038/ncb895.
  • Couchman JR, Rees DA. 1979. The behaviour of fibroblasts migrating from chick heart explants: changes in adhesion, locomotion and growth, and in the distribution of actomyosin and fibronectin. J. Cell Sci. 39:149–165.
  • Burridge K. 1981. Are stress fibres contractile? Nature 294:691–692. http://dx.doi.org/10.1038/294691a0.
  • Arthur WT, Burridge K. 2001. RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol. Biol. Cell 12:2711–2720. http://dx.doi.org/10.1091/mbc.12.9.2711.
  • Edwards DC, Sanders LC, Bokoch GM, Gill GN. 1999. Activation of LIM-kinase by Pak1 couples Rac/Cdc42 GTPase signalling to actin cytoskeletal dynamics. Nat. Cell Biol. 1:253–259. http://dx.doi.org/10.1038/12963.
  • Sumi T, Matsumoto K, Shibuya A, Nakamura T. 2001. Activation of LIM kinases by myotonic dystrophy kinase-related Cdc42-binding kinase alpha. J. Biol. Chem. 276:23092–23096. http://dx.doi.org/10.1074/jbc.C100196200.
  • Mullin MJ, Lightfoot K, Marklund U, Cantrell DA. 2006. Differential requirement for RhoA GTPase depending on the cellular localization of protein kinase D. J. Biol. Chem. 281:25089–25096. http://dx.doi.org/10.1074/jbc.M603591200.
  • Bo H, Zhang S, Gao L, Chen Y, Zhang J, Chang X, Zhu M. 2013. Upregulation of Wnt5a promotes epithelial-to-mesenchymal transition and metastasis of pancreatic cancer cells. BMC Cancer 13:496. http://dx.doi.org/10.1186/1471-2407-13-496.
  • Cheng R, Sun B, Liu Z, Zhao X, Qi L, Li Y, Gu Q. 24 January 2014. Wnt5a suppresses colon cancer by inhibiting cell proliferation and epithelial-mesenchymal transition. J. Cell. Physiol. http://dx.doi.org/10.1002/jcp.24566.
  • Wei W, Li H, Li N, Sun H, Li Q, Shen X. 2013. WNT5A/JNK signaling regulates pancreatic cancer cells migration by phosphorylating paxillin. Pancreatology 13:384–392. http://dx.doi.org/10.1016/j.pan.2013.05.008.
  • Challa P, Arnold JJ. 2014. Rho-kinase inhibitors offer a new approach in the treatment of glaucoma. Expert Opin. Invest. Drugs 23:81–95. http://dx.doi.org/10.1517/13543784.2013.840288.
  • Koizumi N, Okumura N, Ueno M, Nakagawa H, Hamuro J, Kinoshita S. 2013. Rho-associated kinase inhibitor eye drop treatment as a possible medical treatment for Fuchs corneal dystrophy. Cornea 32:1167–1170. http://dx.doi.org/10.1097/ICO.0b013e318285475d.
  • Song H, Gao D. 2011. Fasudil, a Rho-associated protein kinase inhibitor, attenuates retinal ischemia and reperfusion injury in rats. Int. J. Mol. Med. 28:193–198. http://dx.doi.org/10.3892/ijmm.2011.659.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.