32
Views
24
CrossRef citations to date
0
Altmetric
Article

A Retinoblastoma Allele That Is Mutated at Its Common E2F Interaction Site Inhibits Cell Proliferation in Gene-Targeted Mice

, , , , , , , , , , , , & show all
Pages 2029-2045 | Received 03 Dec 2013, Accepted 16 Mar 2014, Published online: 20 Mar 2023

REFERENCES

  • Hanahan D, Weinberg RA. 2000. The hallmarks of cancer. Cell 100:57–70. http://dx.doi.org/10.1016/S0092-8674(00)81683-9.
  • Massague J. 2004. G1 cell-cycle control and cancer. Nature 432:298–306. http://dx.doi.org/10.1038/nature03094.
  • Classon M, Harlow E. 2002. The retinoblastoma tumour suppressor in development and cancer. Nat. Rev. Cancer 2:910–917. http://dx.doi.org/10.1038/nrc950.
  • Sherr CJ, McCormick F. 2002. The RB and p53 pathways in cancer. Cancer Cell 2:103–112. http://dx.doi.org/10.1016/S1535-6108(02)00102-2.
  • DeCaprio JA. 2009. How the Rb tumor suppressor structure and function was revealed by the study of adenovirus and SV40. Virology 384:274–284. http://dx.doi.org/10.1016/j.virol.2008.12.010.
  • zur Hausen H. 2002. Papillomaviruses and cancer: from basic studies to clinical application. Nat. Rev. Cancer 2:342–350. http://dx.doi.org/10.1038/nrc798.
  • Chellappan S, Kraus KB, Kroger B, Munger K, Howley PM, Phelps WC, Nevins JR. 1992. Adenovirus E1A, simian virus 40 tumor antigen, and the human papillomavirus E7 protein share the capacity to disrupt the interaction between transcription factor E2F and the retinoblastoma gene product. Proc. Natl. Acad. Sci. U. S. A. 89:4549–4553. http://dx.doi.org/10.1073/pnas.89.10.4549.
  • Gonzalez SL, Stremlau M, He X, Basile JR, Munger K. 2001. Degradation of the retinoblastoma tumor suppressor by the human papillomavirus type 16 oncoprotein is important for functional inactivation and is separable from proteasomal degradation of E7. J. Virol. 75:7583–7591. http://dx.doi.org/10.1128/JVI.75.16.7583-7591.2001.
  • Hiebert SW. 1993. Regions of the retinoblastoma gene product required for its interaction with the E2F transcription factor are necessary for E2 promoter repression and pRb-mediated growth suppression. Mol. Cell. Biol. 13:3384–3391.
  • Hiebert SW, Chellappan SP, Horowitz JM, Nevins JR. 1992. The interaction of RB with E2F coincides with an inhibition of the transcriptional activity of E2F. Genes Dev. 6:177–185. http://dx.doi.org/10.1101/gad.6.2.177.
  • Qin X-Q, Livingston DM, Ewen M, Sellers WR, Arany Z, Kaelin WG. 1995. The transcription factor E2F-1 is a downstream target of RB action. Mol. Cell. Biol. 15:742–755.
  • Qin XQ, Chittenden T, Livingston DM, Kaelin WGJr. 1992. Identification of a growth suppression domain within the retinoblastoma gene product. Genes Dev. 6:953–964. http://dx.doi.org/10.1101/gad.6.6.953.
  • Dick FA, Dyson N. 2003. pRB contains an E2F1-specific binding domain that allows E2F1-induced apoptosis to be regulated separately from other E2F activities. Mol. Cell 12:639–649. http://dx.doi.org/10.1016/S1097-2765(03)00344-7.
  • Dick FA, Rubin SM. 2013. Molecular mechanisms underlying RB protein function. Nat. Rev. Mol. Cell Biol. 14:297–306. http://dx.doi.org/10.1038/nrm3567.
  • Ianari A, Natale T, Calo E, Ferretti E, Alesse E, Screpanti I, Haigis K, Gulino A, Lees JA. 2009. Proapoptotic function of the retinoblastoma tumor suppressor protein. Cancer Cell 15:184–194. http://dx.doi.org/10.1016/j.ccr.2009.01.026.
  • Pediconi N, Ianari A, Costanzo A, Belloni L, Gallo R, Cimino L, Porcellini A, Screpanti A, Screpanti I, Balsano C, Alesse E, Gulino A, Levrero M. 2003. Differential regulation of E2F1 apoptotic target genes in response to DNA damage. Nat. Cell Biol. 5:552–558. http://dx.doi.org/10.1038/ncb998.
  • Avni D, Yang Martelli HF, Hofmann F, ElShamy WM, Ganesan S, Scully R, Livingston DM. 2003. Active localization of the retinoblastoma protein in chromatin and its response to S phase DNA damage. Mol. Cell 12:735–746. http://dx.doi.org/10.1016/S1097-2765(03)00355-1.
  • Mendoza-Maldonado R, Paolinelli R, Galbiati L, Giadrossi S, Giacca M. 2010. Interaction of the retinoblastoma protein with Orc1 and its recruitment to human origins of DNA replication. PLoS One 5:e13720. http://dx.doi.org/10.1371/journal.pone.0013720.
  • Wells J, Yan PS, Cechvala M, Huang T, Farnham PJ. 2003. Identification of novel pRb binding sites using CpG microarrays suggests that E2F recruits pRb to specific genomic sites during S phase. Oncogene 22:1445–1460. http://dx.doi.org/10.1038/sj.onc.1206264.
  • Chau BN, Pan CW, Wang JY. 2006. Separation of anti-proliferation and anti-apoptotic functions of retinoblastoma protein through targeted mutations of its A/B domain. PLoS One 1:e82. http://dx.doi.org/10.1371/journal.pone.0000082.
  • Cecchini MJ, Dick FA. 2011. The biochemical basis of CDK phosphorylation-independent regulation of E2F1 by the retinoblastoma protein. Biochem. J. 434:297–308. http://dx.doi.org/10.1042/BJ20101210.
  • Julian LM, Palander O, Seifried LA, Foster JE, Dick FA. 2008. Characterization of an E2F1-specific binding domain in pRB and its implications for apoptotic regulation. Oncogene 27:1572–1579. http://dx.doi.org/10.1038/sj.onc.1210803.
  • Carnevale J, Palander O, Seifried LA, Dick FA. 2012. DNA damage signals through differentially modified E2F1 molecules to induce apoptosis. Mol. Cell. Biol. 32:900–912. http://dx.doi.org/10.1128/MCB.06286-11.
  • Calbo J, Parreno M, Sotillo E, Yong T, Mazo A, Garriga J, Grana X. 2002. G1 cyclin/cyclin-dependent kinase-coordinated phosphorylation of endogenous pocket proteins differentially regulates their interactions with E2F4 and E2F1 and gene expression. J. Biol. Chem. 277:50263–50274. http://dx.doi.org/10.1074/jbc.M209181200.
  • Cecchini MJ, Amiri M, Dick FA. 2012. Analysis of cell cycle position in mammalian cells. J. Vis. Exp. 2012(59):3491. http://dx.doi.org/10.3791/3491.
  • Seifried LA, Talluri S, Cecchini M, Julian LM, Mymryk JS, Dick FA. 2008. pRB-E2F1 complexes are resistant to adenovirus E1A-mediated disruption. J. Virol. 82:4511–4520. http://dx.doi.org/10.1128/JVI.02713-07.
  • Field SJ, Tsai F-Y, Kuo F, Zubiaga AM, Kaelin JWG, Livingston DM, Orkin SH, Greenberg ME. 1996. E2F-1 functions in mice to promote apoptosis and suppress proliferation. Cell 85:549–561. http://dx.doi.org/10.1016/S0092-8674(00)81255-6.
  • Dick FA, Sailhamer E, Dyson NJ. 2000. Mutagenesis of the pRB pocket reveals that cell cycle arrest functions are separable from binding to viral oncoproteins. Mol. Cell. Biol. 20:3715–3727. http://dx.doi.org/10.1128/MCB.20.10.3715-3727.2000.
  • Pear WS, Nolan GP, Scott ML, Baltimore D. 1993. Production of high-titer helper-free retroviruses by transient transfection. Proc. Natl. Acad. Sci. U. S. A. 90:8392–8396. http://dx.doi.org/10.1073/pnas.90.18.8392.
  • Novitch BG, Mulligan GJ, Jacks T, Lassar AB. 1996. Skeletal muscle cells lacking the retinoblastoma protein display defects in muscle gene expression and accumulate in S and G2 phases of the cell cycle. J. Cell Biol. 135:441–456. http://dx.doi.org/10.1083/jcb.135.2.441.
  • Talluri S, Isaac CE, Ahmad M, Henley SA, Francis SM, Martens AL, Bremner R, Dick FA. 2010. A G1 checkpoint mediated by the retinoblastoma protein that is dispensable in terminal differentiation but essential for senescence. Mol. Cell. Biol. 30:948–960. http://dx.doi.org/10.1128/MCB.01168-09.
  • Chicas A, Wang X, Zhang C, McCurrach M, Zhao Z, Mert O, Dickins RA, Narita M, Zhang M, Lowe SW. 2010. Dissecting the unique role of the retinoblastoma tumor suppressor during cellular senescence. Cancer Cell 17:376–387. http://dx.doi.org/10.1016/j.ccr.2010.01.023.
  • Bolstad BM, Irizarry RA, Astrand M, Speed TP. 2003. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19:185–193. http://dx.doi.org/10.1093/bioinformatics/19.2.185.
  • Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. 2003. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 31:e15. http://dx.doi.org/10.1093/nar/gng015.
  • Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP. 2003. Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostatistics 4:249–264. http://dx.doi.org/10.1093/biostatistics/4.2.249.
  • Markovics JA, Carroll PA, Robles MT, Pope H, Coopersmith CM, Pipas JM. 2005. Intestinal dysplasia induced by simian virus 40 T antigen is independent of p53. J. Virol. 79:7492–7502. http://dx.doi.org/10.1128/JVI.79.12.7492-7502.2005.
  • Shan B, Chang CY, Jones D, Lee WH. 1994. The transcription factor E2F-1 mediates the autoregulation of RB gene expression. Mol. Cell. Biol. 14:299–309.
  • Herrera RE, Sah VP, Williams BO, Makela TP, Weinberg RA, Jacks T. 1996. Altered cell cycle kinetics, gene expression, and G1 restriction point regulation in Rb-deficient fibroblasts. Mol. Cell. Biol. 16:2402–2407.
  • Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–674. http://dx.doi.org/10.1016/j.cell.2011.02.013.
  • Hurford RKJr, Cobrinik D, Lee MH, Dyson N. 1997. pRB and p107/p130 are required for the regulated expression of different sets of E2F responsive genes. Genes Dev. 11:1447–1463. http://dx.doi.org/10.1101/gad.11.11.1447.
  • Clarke AR, Maandag ER, van Roon M, van der Lugt NM, van der Valk M, Hooper ML, Berns A, te Riele H. 1992. Requirement for a functional Rb-1 gene in murine development. Nature 359:328–330. http://dx.doi.org/10.1038/359328a0.
  • Jacks T, Fazeli A, Schmitt EM, Bronson RT, Goodell MA, Weinberg RA. 1992. Effects of an Rb mutation in the mouse. Nature 359:295–300. http://dx.doi.org/10.1038/359295a0.
  • Lee EY, Chang CY, Hu N, Wang YC, Lai CC, Herrup K, Lee WH, Bradley A. 1992. Mice deficient for Rb are nonviable and show defects in neurogenesis and haematopoiesis. Nature 359:288–294. http://dx.doi.org/10.1038/359288a0.
  • Francis SM, Bergsied J, Isaac CE, Coschi CH, Martens AL, Hojilla CV, Chakrabarti S, Dimattia GE, Khoka R, Wang JY, Dick FA. 2009. A functional connection between pRB and transforming growth factor beta in growth inhibition and mammary gland development. Mol. Cell. Biol. 29:4455–4466. http://dx.doi.org/10.1128/MCB.00473-09.
  • Chong JL, Wenzel PL, Saenz-Robles MT, Nair V, Ferrey A, Hagan JP, Gomez YM, Sharma N, Chen HZ, Ouseph M, Wang SH, Trikha P, Culp B, Mezache L, Winton DJ, Sansom OJ, Chen D, Bremner R, Cantalupo PG, Robinson ML, Pipas JM, Leone G. 2009. E2f1–3 switch from activators in progenitor cells to repressors in differentiating cells. Nature 462:930–934. http://dx.doi.org/10.1038/nature08677.
  • Harrison DJ, Hooper ML, Armstrong JF, Clarke AR. 1995. Effects of heterozygosity for the Rb-1t19neo allele in the mouse. Oncogene 10:1615–1620.
  • Hu N, Gutsmann A, Herbert DC, Bradley A, Lee W-H, Lee EY. 1994. Heterozygous Rb-1 delta 20/+ mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene 9:1021–1027.
  • Vooijs M, van der Valk M, te Riele H, Berns A. 1998. Flp-mediated tissue-specific inactivation of the retinoblastoma tumor suppressor gene in the mouse. Oncogene 17:1–12. http://dx.doi.org/10.1038/sj.onc.1202169.
  • Williams BO, Schmitt EM, Remington L, Bronson RT, Albert DM, Weinbert RA, Jacks T. 1994. Extensive contribution of Rb-deficient cells to adult chimeric mice with limited histopathological consequences. EMBO J. 13:4251–4259.
  • Wang H, Bauzon F, Ji P, Xu X, Sun D, Locker J, Sellers RS, Nakayama K, Nakayama KI, Cobrinik D, Zhu L. 2010. Skp2 is required for survival of aberrantly proliferating Rb1-deficient cells and for tumorigenesis in Rb1+/− mice. Nat. Genet. 42:83–88. http://dx.doi.org/10.1038/ng.498.
  • Ciavarra G, Zacksenhaus E. 2010. Rescue of myogenic defects in Rb-deficient cells by inhibition of autophagy or by hypoxia-induced glycolytic shift. J. Cell Biol. 191:291–301. http://dx.doi.org/10.1083/jcb.201005067.
  • Araki K, Kawauchi K, Hirata H, Yamamoto M, Taya Y. 2013. Cytoplasmic translocation of the retinoblastoma protein disrupts sarcomeric organization. eLife 2:e01228. http://dx.doi.org/10.7554/eLife.01228.
  • Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S, Lees JA. 2000. E2f3 is critical for normal cellular proliferation. Genes Dev. 14:690–703.
  • Yamasaki L, Bronson R, Williams BO, Dyson NJ, Harlow E, Jacks T. 1998. Loss of E2F-1 reduces tumorigenesis and extends the lifespan of Rb1(+/−) mice. Nat. Genet. 18:360–364. http://dx.doi.org/10.1038/ng0498-360.
  • LeCouter JE. 1998. Strain-dependent embryonic lethality in mice lacking the retinoblastoma-related p130 gene. Development 125:4669–4679.
  • LeCouter JE, Kablar B, Hardy WR, Ying C, Megeney LA, May LL, Rudnicki MA. 1998. Strain-dependent myeloid hyperplasia, growth deficiency, and accelerated cell cycle in mice lacking the Rb-related p107 gene. Mol. Cell. Biol. 18:7455–7465.
  • Geng Y, Yu Q, Sicinska E, Das M, Schneider JE, Bhattacharya S, Rideout WM, Bronson RT, Gardner H, Sicinski P. 2003. Cyclin E ablation in the mouse. Cell 114:431–443. http://dx.doi.org/10.1016/S0092-8674(03)00645-7.
  • Kozar K, Ciemerych MA, Rebel VI, Shigematsu H, Zagozdzon A, Sicinska E, Geng Y, Yu Q, Bhattacharya S, Bronson RT, Akashi K, Sicinski P. 2004. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118:477–491. http://dx.doi.org/10.1016/j.cell.2004.07.025.
  • Bruce JL, Hurford RKJ, Classon M, Koh J, Dyson N. 2000. Requirements for cell cycle arrest by p16INK4a. Mol. Cell 6:737–742. http://dx.doi.org/10.1016/S1097-2765(00)00072-1.
  • Gaubatz S, Lindeman GJ, Jakoi L, Nevins JR, Livingston DM, Rempel RE. 2000. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol. Cell 6:729–735. http://dx.doi.org/10.1016/S1097-2765(00)00071-X.
  • Dyson N. 1998. The regulation of E2F by pRB-family proteins. Genes Dev. 12:2245–2262. http://dx.doi.org/10.1101/gad.12.15.2245.
  • Moberg K, Starz MA, Lees JA. 1996. E2F-4 switches from p130 to p107 and pRB in response to cell cycle reentry. Mol. Cell. Biol. 16:1436–1449.
  • Xiao B, Spencer J, Clements A, Ali-Khan N, Mittnacht S, Broceno C, Burghammer M, Perrakis A, Marmorstein R, Gamblin SJ. 2003. Crystal structure of the retinoblastoma tumor suppressor protein bound to E2F and the molecular basis of its regulation. Proc. Natl. Acad. Sci. U. S. A. 100:2363–2368. http://dx.doi.org/10.1073/pnas.0436813100.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.