34
Views
21
CrossRef citations to date
0
Altmetric
Article

Dynamic Regulation of the COP9 Signalosome in Response to DNA Damage

, , , , , , & show all
Pages 1066-1076 | Received 05 Dec 2013, Accepted 19 Dec 2013, Published online: 20 Mar 2023

REFERENCES

  • Schwechheimer C. 2004. The COP9 signalosome (CSN): an evolutionary conserved proteolysis regulator in eukaryotic development. Biochim. Biophys. Acta 1695:45–54. http://dx.doi.org/10.1016/j.bbamcr.2004.09.023.
  • Wei N, Serino G, Deng XW. 2008. The COP9 signalosome: more than a protease. Trends Biochem. Sci. 33:592–600. http://dx.doi.org/10.1016/j.tibs.2008.09.004.
  • Hannss R, Dubiel W. 2011. COP9 signalosome function in the DDR. FEBS Lett. 585:2845–2852. http://dx.doi.org/10.1016/j.febslet.2011.04.027.
  • Hofmann K, Bucher P. 1998. The PCI domain: a common theme in three multiprotein complexes. Trends Biochem. Sci. 23:204–205. http://dx.doi.org/10.1016/S0968-0004(98)01217-1.
  • Cope GA, Suh GS, Aravind L, Schwarz SE, Zipursky SL, Koonin EV, Deshaies RJ. 2002. Role of predicted metalloprotease motif of Jab1/Csn5 in cleavage of Nedd8 from Cul1. Science 298:608–611. http://dx.doi.org/10.1126/science.1075901.
  • Echalier A, Pan Y, Birol M, Tavernier N, Pintard L, Hoh F, Ebel C, Galophe N, Claret FX, Dumas C. 2013. Insights into the regulation of the human COP9 signalosome catalytic subunit, CSN5/Jab1. Proc. Natl. Acad. Sci. U. S. A. 110:1273–1278. http://dx.doi.org/10.1073/pnas.1209345110.
  • Pick E, Golan A, Zimbler JZ, Guo L, Sharaby Y, Tsuge T, Hofmann K, Wei N. 2012. The minimal deneddylase core of the COP9 signalosome excludes the Csn6 MPN- domain. PLoS One 7:e43980. http://dx.doi.org/10.1371/journal.pone.0043980.
  • Sharon M, Mao H, Boeri Erba E, Stephens E, Zheng N, Robinson CV. 2009. Symmetrical modularity of the COP9 signalosome complex suggests its multifunctionality. Structure 17:31–40. http://dx.doi.org/10.1016/j.str.2008.10.012.
  • Enchev RI, Schreiber A, Beuron F, Morris EP. 2010. Structural insights into the COP9 signalosome and its common architecture with the 26S proteasome lid and eIF3. Structure 18:518–527. http://dx.doi.org/10.1016/j.str.2010.02.008.
  • Enchev RI, Scott DC, da Fonseca PC, Schreiber A, Monda JK, Schulman BA, Peter M, Morris EP. 2012. Structural basis for a reciprocal regulation between SCF and CSN. Cell Rep. 2:616–627. http://dx.doi.org/10.1016/j.celrep.2012.08.019.
  • Lyapina S, Cope G, Shevchenko A, Serino G, Tsuge T, Zhou C, Wolf DA, Wei N, Deshaies RJ. 2001. Promotion of NEDD-CUL1 conjugate cleavage by COP9 signalosome. Science 292:1382–1385. http://dx.doi.org/10.1126/science.1059780.
  • Deshaies RJ, Joazeiro CA. 2009. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem. 78:399–434. http://dx.doi.org/10.1146/annurev.biochem.78.101807.093809.
  • Duda DM, Borg LA, Scott DC, Hunt HW, Hammel M, Schulman BA. 2008. Structural insights into NEDD8 activation of cullin-RING ligases: conformational control of conjugation. Cell 134:995–1006. http://dx.doi.org/10.1016/j.cell.2008.07.022.
  • Saha A, Deshaies RJ. 2008. Multimodal activation of the ubiquitin ligase SCF by Nedd8 conjugation. Mol. Cell 32:21–31. http://dx.doi.org/10.1016/j.molcel.2008.08.021.
  • Schmidt MW, McQuary PR, Wee S, Hofmann K, Wolf DA. 2009. F-box-directed CRL complex assembly and regulation by the CSN and CAND1. Mol. Cell 35:586–597. http://dx.doi.org/10.1016/j.molcel.2009.07.024.
  • Emberley ED, Mosadeghi R, Deshaies RJ. 2012. Deconjugation of Nedd8 from Cul1 Is directly regulated by Skp1-F-box and substrate, and the COP9 signalosome inhibits deneddylated SCF by a noncatalytic mechanism. J. Biol. Chem. 287:29679–29689. http://dx.doi.org/10.1074/jbc.M112.352484.
  • Wolf DA, Zhou C, Wee S. 2003. The COP9 signalosome: an assembly and maintenance platform for cullin ubiquitin ligases? Nat. Cell Biol. 5:1029–1033. http://dx.doi.org/10.1038/ncb1203-1029.
  • Lee EW, Oh W, Song J. 2006. Jab1 as a mediator of nuclear export and cytoplasmic degradation of p53. Mol. Cells 22:133–140.
  • Richardson KS, Zundel W. 2005. The emerging role of the COP9 signalosome in cancer. Mol. Cancer Res. 3:645–653. http://dx.doi.org/10.1158/1541-7786.MCR-05-0233.
  • Lee MH, Zhao R, Phan L, Yeung SC. 2011. Roles of COP9 signalosome in cancer. Cell Cycle 10:3057–3066. http://dx.doi.org/10.4161/cc.10.18.17320.
  • Adler AS, Littlepage LE, Lin M, Kawahara TL, Wong DJ, Werb Z, Chang HY. 2008. CSN5 isopeptidase activity links COP9 signalosome activation to breast cancer progression. Cancer Res. 68:506–515. http://dx.doi.org/10.1158/0008-5472.CAN-07-3060.
  • Adler AS, Lin M, Horlings H, Nuyten DS, van de Vijver MJ, Chang HY. 2006. Genetic regulators of large-scale transcriptional signatures in cancer. Nat. Genet. 38:421–430. http://dx.doi.org/10.1038/ng1752.
  • Shackleford TJ, Claret FX. 2010. JAB1/CSN5: a new player in cell cycle control and cancer. Cell Div. 5:26. http://dx.doi.org/10.1186/1747-1028-5-26.
  • Zhao R, Yeung SC, Chen J, Iwakuma T, Su CH, Chen B, Qu C, Zhang F, Chen YT, Lin YL, Lee DF, Jin F, Zhu R, Shaikenov T, Sarbassov D, Sahin A, Wang H, Wang H, Lai CC, Tsai FJ, Lozano G, Lee MH. 2011. Subunit 6 of the COP9 signalosome promotes tumorigenesis in mice through stabilization of MDM2 and is upregulated in human cancers. J. Clin. Invest. 121:851–865. http://dx.doi.org/10.1172/JCI44111.
  • Lee YH, Judge AD, Seo D, Kitade M, Gomez-Quiroz LE, Ishikawa T, Andersen JB, Kim BK, Marquardt JU, Raggi C, Avital I, Conner EA, MacLachlan I, Factor VM, Thorgeirsson SS. 2011. Molecular targeting of CSN5 in human hepatocellular carcinoma: a mechanism of therapeutic response. Oncogene 30:4175–4184. http://dx.doi.org/10.1038/onc.2011.126.
  • Chen C, Okayama H. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–2752.
  • Lippincott-Schwartz J, Snapp E, Kenworthy A. 2001. Studying protein dynamics in living cells. Nat. Rev. Mol. Cell Biol. 2:444–456. http://dx.doi.org/10.1038/35073068.
  • Sprague BL, Pego RL, Stavreva DA, McNally JG. 2004. Analysis of binding reactions by fluorescence recovery after photobleaching. Biophys. J. 86:3473–3495. http://dx.doi.org/10.1529/biophysj.103.026765.
  • Swaminathan R, Hoang CP, Verkman AS. 1997. Photobleaching recovery and anisotropy decay of green fluorescent protein GFP-S65T in solution and cells: cytoplasmic viscosity probed by green fluorescent protein translational and rotational diffusion. Biophys. J. 72:1900–1907. http://dx.doi.org/10.1016/S0006-3495(97)78835-0.
  • Reyes JC, Muchardt C, Yaniv M. 1997. Components of the human SWI/SNF complex are enriched in active chromatin and are associated with the nuclear matrix. J. Cell Biol. 137:263–274. http://dx.doi.org/10.1083/jcb.137.2.263.
  • Bar N, Dikstein R. 2010. miR-22 forms a regulatory loop in PTEN/AKT pathway and modulates signaling kinetics. PLoS One 5:e10859. http://dx.doi.org/10.1371/journal.pone.0010859.
  • Mundt KE, Porte J, Murray JM, Brikos C, Christensen PU, Caspari T, Hagan IM, Millar JB, Simanis V, Hofmann K, Carr AM. 1999. The COP9/signalosome complex is conserved in fission yeast and has a role in S phase. Curr. Biol. 9:1427–1430. http://dx.doi.org/10.1016/S0960-9822(00)80091-3.
  • Bähler J, Wu JQ, Longtine MS, Shah NG, McKenzie AIII, Steever AB, Wach A, Philippsen P, Pringle JR. 1998. Heterologous modules for efficient and versatile PCR-based gene targeting in Schizosaccharomyces pombe. Yeast 14:943–951. http://dx.doi.org/10.1002/(SICI)1097-0061(199807)14:10<943::AID-YEA292>3.0.CO;2-Y.
  • Thongboonkerd V, Chutipongtanate S, Kanlaya R. 2006. Systematic evaluation of sample preparation methods for gel-based human urinary proteomics: quantity, quality, and variability. J. Proteome Res. 5:183–191. http://dx.doi.org/10.1021/pr0502525.
  • Ramagli LS. 1999. Quantifying protein in 2-D PAGE solubilization buffers. Methods Mol. Biol. 112:99–103.
  • Shaul YD, Seger R. 2006. ERK1c regulates Golgi fragmentation during mitosis. J. Cell Biol. 172:885–897. http://dx.doi.org/10.1083/jcb.200509063.
  • Zhou H, Ye M, Dong J, Corradini E, Cristobal A, Heck AJ, Zou H, Mohammed S. 2013. Robust phosphoproteome enrichment using monodisperse microsphere-based immobilized titanium (IV) ion affinity chromatography. Nat. Protoc. 8:461–480. http://dx.doi.org/10.1038/nprot.2013.010.
  • Dicker L, Lin X, Ivanov AR. 2010. Increased power for the analysis of label-free LC-MS/MS proteomics data by combining spectral counts and peptide peak attributes. Mol. Cell. Proteomics 9:2704–2718. http://dx.doi.org/10.1074/mcp.M110.002774.
  • Thongboonkerd V, Chutipongtanate S, Kanlaya R. 2006. Systematic evaluation of sample preparation methods for gel-based human urinary proteomics: quantity, quality, and variability. J. Proteome Res. 5:183–191. http://dx.doi.org/10.1021/pr0502525.
  • Savitski MM, Lemeer S, Boesche M, Lang M, Mathieson T, Bantscheff M, Kuster B. 2011. Confident phosphorylation site localization using the Mascot Delta Score. Mol. Cell. Proteomics 10:M110.003830. http://dx.doi.org/10.1074/mcp.M110.003830.
  • Vizcaíno JA, Côté RG, Csordas A, Dianes JA, Fabregat A, Foster JM, Griss J, Alpi E, Birim M, Contell J, O'Kelly G, Schoenegger A, Ovelleiro D, Pérez-Riverol Y, Reisinger F, Ríos D, Wang R, Hermjakob H. 2013. The PRoteomics IDEntifications (PRIDE) database and associated tools: status in 2013. Nucleic Acids Res. 41:D1063–D1069. http://dx.doi.org/10.1093/nar/gks1262.
  • Mundt KE, Liu C, Carr AM. 2002. Deletion mutants in COP9/signalosome subunits in fission yeast Schizosaccharomyces pombe display distinct phenotypes. Mol. Biol. Cell 13:493–502. http://dx.doi.org/10.1091/mbc.01-10-0521.
  • Chamovitz DA, Wei N, Osterlund MT, von Arnim AG, Staub JM, Matsui M, Deng XW. 1996. The COP9 complex, a novel multisubunit nuclear regulator involved in light control of a plant developmental switch. Cell 86:115–121. http://dx.doi.org/10.1016/S0092-8674(00)80082-3.
  • Huang J, Yuan H, Lu C, Liu X, Cao X, Wan M. 2007. Jab1 mediates protein degradation of the Rad9-Rad1-Hus1 checkpoint complex. J. Mol. Biol. 371:514–527. http://dx.doi.org/10.1016/j.jmb.2007.05.095.
  • Hunter C, Evans J, Valencik ML. 2008. Subunit 3 of the COP9 signalosome is poised to facilitate communication between the extracellular matrix and the nucleus through the muscle-specific beta1D integrin. Cell Commun. Adhes. 15:247–260. http://dx.doi.org/10.1080/15419060802198660.
  • Peng Z, Staub JM, Serino G, Kwok SF, Kurepa J, Bruce BD, Vierstra RD, Wei N, Deng XW. 2001. The cellular level of PR500, a protein complex related to the 19S regulatory particle of the proteasome, is regulated in response to stresses in plants. Mol. Biol. Cell 12:383–392. http://dx.doi.org/10.1091/mbc.12.2.383.
  • Wang J, Barnes RO, West NR, Olson M, Chu JE, Watson PH. 2008. Jab1 is a target of EGFR signaling in ERalpha-negative breast cancer. Breast Cancer Res. 10:R51. http://dx.doi.org/10.1186/bcr2105.
  • Rizzo MA, Springer GH, Granada B, Piston DW. 2004. An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22:445–449. http://dx.doi.org/10.1038/nbt945.
  • Luijsterburg MS, Goedhart J, Moser J, Kool H, Geverts B, Houtsmuller AB, Mullenders LH, Vermeulen W, van Driel R. 2007. Dynamic in vivo interaction of DDB2 E3 ubiquitin ligase with UV-damaged DNA is independent of damage-recognition protein XPC. J. Cell Sci. 120:2706–2716. http://dx.doi.org/10.1242/jcs.008367.
  • Dross N, Spriet C, Zwerger M, Muller G, Waldeck W, Langowski J. 2009. Mapping eGFP oligomer mobility in living cell nuclei. PLoS One 4:e5041. http://dx.doi.org/10.1371/journal.pone.0005041.
  • van Royen ME, Farla P, Mattern KA, Geverts B, Trapman J, Houtsmuller AB. 2009. Fluorescence recovery after photobleaching (FRAP) to study nuclear protein dynamics in living cells. Methods Mol. Biol. 464:363–385. http://dx.doi.org/10.1007/978-1-60327-461-6_20.
  • Chamovitz DA, Segal D. 2001. JAB1/CSN5 and the COP9 signalosome. A complex situation. EMBO Rep. 2:96–101. http://dx.doi.org/10.1093/embo-reports/kve028.
  • Yoshida A, Yoneda-Kato N, Kato JY. 2013. CSN5 specifically interacts with CDK2 and controls senescence in a cytoplasmic cyclin E-mediated manner. Sci. Rep. 3:1054. http://dx.doi.org/10.1038/srep01054.
  • Groisman R, Polanowska J, Kuraoka I, Sawada J, Saijo M, Drapkin R, Kisselev AF, Tanaka K, Nakatani Y. 2003. The ubiquitin ligase activity in the DDB2 and CSA complexes is differentially regulated by the COP9 signalosome in response to DNA damage. Cell 113:357–367. http://dx.doi.org/10.1016/S0092-8674(03)00316-7.
  • Chamovitz DA. 2009. Revisiting the COP9 signalosome as a transcriptional regulator. EMBO Rep. 10:352–358. http://dx.doi.org/10.1038/embor.2009.33.
  • Fang L, Wang X, Yamoah K, Chen PL, Pan ZQ, Huang L. 2008. Characterization of the human COP9 signalosome complex using affinity purification and mass spectrometry. J. Proteome Res. 7:4914–4925. http://dx.doi.org/10.1021/pr800574c.
  • Beli P, Lukashchuk N, Wagner SA, Weinert BT, Olsen JV, Baskcomb L, Mann M, Jackson SP, Choudhary C. 2012. Proteomic investigations reveal a role for RNA processing factor THRAP3 in the DNA damage response. Mol. Cell 46:212–225. http://dx.doi.org/10.1016/j.molcel.2012.01.026.
  • Uhle S, Medalia O, Waldron R, Dumdey R, Henklein P, Bech-Otschir D, Huang X, Berse M, Sperling J, Schade R, Dubiel W. 2003. Protein kinase CK2 and protein kinase D are associated with the COP9 signalosome. EMBO J. 22:1302–1312. http://dx.doi.org/10.1093/emboj/cdg127.
  • Reference deleted.
  • Huang X, Langelotz C, Hetfeld-Pechoc BK, Schwenk W, Dubiel W. 2009. The COP9 signalosome mediates beta-catenin degradation by deneddylation and blocks adenomatous polyposis coli destruction via USP15. J. Mol. Biol. 391:691–702. http://dx.doi.org/10.1016/j.jmb.2009.06.066.
  • Matsuoka S, Ballif BA, Smogorzewska A, McDonald ERIII, Hurov KE, Luo J, Bakalarski CE, Zhao Z, Solimini N, Lerenthal Y, Shiloh Y, Gygi SP, Elledge SJ. 2007. ATM and ATR substrate analysis reveals extensive protein networks responsive to DNA damage. Science 316:1160–1166. http://dx.doi.org/10.1126/science.1140321.
  • Görg A, Weiss W, Dunn MJ. 2004. Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685. http://dx.doi.org/10.1002/pmic.200401031.
  • Robinson NE, Robinson AB. 2001. Deamidation of human proteins. Proc. Natl. Acad. Sci. U. S. A. 98:12409–12413. http://dx.doi.org/10.1073/pnas.221463198.
  • Rozen S, Tieri A, Ridner G, Stark AK, Schmaler T, Ben-Nissan G, Dubiel W, Sharon M. 2013. Exposing the subunit diversity within protein complexes: a mass spectrometry approach. Methods 59:270–277. http://dx.doi.org/10.1016/j.ymeth.2012.12.013.
  • Chen B, Zhao R, Su CH, Linan M, Tseng C, Phan L, Fang L, Yang HY, Yang H, Wang W, Xu X, Jiang N, Cai S, Jin F, Yeung SC, Lee MH. 2012. CDK inhibitor p57 (Kip2) is negatively regulated by COP9 signalosome subunit 6. Cell Cycle 11:4633–4641. http://dx.doi.org/10.4161/cc.22887.
  • Tomoda K, Kubota Y, Kato J. 1999. Degradation of the cyclin-dependent-kinase inhibitor p27Kip1 is instigated by Jab1. Nature 398:160–165. http://dx.doi.org/10.1038/18230.
  • Yang X, Menon S, Lykke-Andersen K, Tsuge T, Di X, Wang X, Rodriguez-Suarez RJ, Zhang H, Wei N. 2002. The COP9 signalosome inhibits p27(kip1) degradation and impedes G1-S phase progression via deneddylation of SCF Cul1. Curr. Biol. 12:667–672. http://dx.doi.org/10.1016/S0960-9822(02)00791-1.
  • Wang H, Zhai L, Xu J, Joo HY, Jackson S, Erdjument-Bromage H, Tempst P, Xiong Y, Zhang Y. 2006. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol. Cell 22:383–394. http://dx.doi.org/10.1016/j.molcel.2006.03.035.
  • Barford D, Hu SH, Johnson LN. 1991. Structural mechanism for glycogen phosphorylase control by phosphorylation and AMP. J. Mol. Biol. 218:233–260. http://dx.doi.org/10.1016/0022-2836(91)90887-C.
  • Christensen GL, Kelstrup CD, Lyngso C, Sarwar U, Bogebo R, Sheikh SP, Gammeltoft S, Olsen JV, Hansen JL. 2010. Quantitative phosphoproteomics dissection of seven-transmembrane receptor signaling using full and biased agonists. Mol. Cell. Proteomics 9:1540–1553. http://dx.doi.org/10.1074/mcp.M900550-MCP200.
  • Dephoure N, Zhou C, Villen J, Beausoleil SA, Bakalarski CE, Elledge SJ, Gygi SP. 2008. A quantitative atlas of mitotic phosphorylation. Proc. Natl. Acad. Sci. U. S. A. 105:10762–10767. http://dx.doi.org/10.1073/pnas.0805139105.
  • Olsen JV, Vermeulen M, Santamaria A, Kumar C, Miller ML, Jensen LJ, Gnad F, Cox J, Jensen TS, Nigg EA, Brunak S, Mann M. 2010. Quantitative phosphoproteomics reveals widespread full phosphorylation site occupancy during mitosis. Sci. Signal. 3:ra3. http://dx.doi.org/10.1126/scisignal.2000475.
  • Rigbolt KT, Prokhorova TA, Akimov V, Henningsen J, Johansen PT, Kratchmarova I, Kassem M, Mann M, Olsen JV, Blagoev B. 2011. System-wide temporal characterization of the proteome and phosphoproteome of human embryonic stem cell differentiation. Sci. Signal. 4:rs3. http://dx.doi.org/10.1126/scisignal.2001570.
  • Van Hoof D, Munoz J, Braam SR, Pinkse MW, Linding R, Heck AJ, Mummery CL, Krijgsveld J. 2009. Phosphorylation dynamics during early differentiation of human embryonic stem cells. Cell Stem Cell 5:214–226. http://dx.doi.org/10.1016/j.stem.2009.05.021.
  • Weber C, Schreiber TB, Daub H. 2012. Dual phosphoproteomics and chemical proteomics analysis of erlotinib and gefitinib interference in acute myeloid leukemia cells. J. Proteomics 75:1343–1356. http://dx.doi.org/10.1016/j.jprot.2011.11.004.
  • Oh H, Jung HY, Kim J, Bae YS. 2010. Phosphorylation of serine282 in NADPH oxidase activator 1 by Erk desensitizes EGF-induced ROS generation. Biochem. Biophys. Res. Commun. 394:691–696. http://dx.doi.org/10.1016/j.bbrc.2010.03.053.
  • Swarup G, Speeg KVJr, Cohen S, Garbers DL. 1982. Phosphotyrosyl-protein phosphatase of TCRC-2 cells. J. Biol. Chem. 257:7298–7301.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.