33
Views
23
CrossRef citations to date
0
Altmetric
Article

Thioesterase Superfamily Member 2 (Them2) and Phosphatidylcholine Transfer Protein (PC-TP) Interact To Promote Fatty Acid Oxidation and Control Glucose Utilization

, , , , &
Pages 2396-2408 | Received 05 Dec 2013, Accepted 08 Apr 2014, Published online: 20 Mar 2023

REFERENCES

  • Wei J, Kang HW, Cohen DE. 2009. Thioesterase superfamily member 2 (Them2)/acyl-CoA thioesterase 13 (Acot13): a homotetrameric hotdog fold thioesterase with selectivity for long-chain fatty acyl-CoAs. Biochem. J. 421:311–322. http://dx.doi.org/10.1042/BJ20090039.
  • Cao J, Xu H, Zhao H, Gong W, Dunaway-Mariano D. 2009. The mechanisms of human hotdog-fold thioesterase 2 (hTHEM2) substrate recognition and catalysis illuminated by a structure and function based analysis. Biochemistry 48:1293–1304. http://dx.doi.org/10.1021/bi801879z.
  • Kanno K, Wu MK, Agate DS, Fanelli BJ, Wagle N, Scapa EF, Ukomadu C, Cohen DE. 2007. Interacting proteins dictate function of the minimal START domain phosphatidylcholine transfer protein/StarD2. J. Biol. Chem. 282:30728–30736. http://dx.doi.org/10.1074/jbc.M703745200.
  • Kang HW, Ribich S, Kim BW, Hagen SJ, Bianco AC, Cohen DE. 2009. Mice lacking Pctp/StarD2 exhibit increased adaptive thermogenesis and enlarged mitochondria in brown adipose tissue. J. Lipid Res. 50:2212–2221. http://dx.doi.org/10.1194/jlr.M900013-JLR200.
  • Cheng Z, Bao S, Shan X, Xu H, Gong W. 2006. Human thioesterase superfamily member 2 (hTHEM2) is co-localized with beta-tubulin onto the microtubule. Biochem. Biophys. Res. Commun. 350:850–853. http://dx.doi.org/10.1016/j.bbrc.2006.09.105.
  • Kang HW, Niepel MW, Han S, Kawano Y, Cohen DE. 2012. Thioesterase superfamily member 2/acyl-CoA thioesterase 13 (Them2/Acot13) regulates hepatic lipid and glucose metabolism. FASEB J. 26:2209–2221. http://dx.doi.org/10.1096/fj.11-202853.
  • Kang HW, Ozdemir C, Kawano Y, LeClair KB, Vernochet C, Kahn CR, Hagen SJ, Cohen DE. 2013. Thioesterase superfamily member 2/acyl-CoA thioesterase 13 (Them2/Acot13) regulates adaptive thermogenesis in mice. J. Biol. Chem. 288:33376–33386. http://dx.doi.org/10.1074/jbc.M113.481408.
  • Roderick SL, Chan WW, Agate DS, Olsen LR, Vetting MW, Rajashankar KR, Cohen DE. 2002. Structure of human phosphatidylcholine transfer protein in complex with its ligand. Nat. Struct. Biol. 9:507–511. http://dx.doi.org/10.1038/nsb812.
  • Scapa EF, Pocai A, Wu MK, Gutierrez-Juarez R, Glenz L, Kanno K, Li H, Biddinger S, Jelicks LA, Rossetti L, Cohen DE. 2008. Regulation of energy substrate utilization and hepatic insulin sensitivity by phosphatidylcholine transfer protein/StarD2. FASEB J. 22:2579–2590. http://dx.doi.org/10.1096/fj.07-105395.
  • Ersoy BA, Tarun A, D'Aquino K, Hancer NJ, Ukomadu C, White MF, Michel T, Manning BD, Cohen DE. 2013. Phosphatidylcholine transfer protein interacts with thioesterase superfamily member 2 to attenuate insulin signaling. Sci. Signal. 6:ra64. http://dx.doi.org/10.1126/scisignal.2004111.
  • Kang HW, Kanno K, Scapa EF, Cohen DE. 2010. Regulatory role for phosphatidylcholine transfer protein/StarD2 in the metabolic response to peroxisome proliferator activated receptor alpha (PPARα). Biochim. Biophys. Acta 1801:496–502. http://dx.doi.org/10.1016/j.bbalip.2009.12.013.
  • Kang HW, Wei J, Cohen DE. 2010. PC-TP/StARD2: of membranes and metabolism. Trends Endocrinol. Metab. 21:449–456. http://dx.doi.org/10.1016/j.tem.2010.02.001.
  • Kersten S, Seydoux J, Peters JM, Gonzalez FJ, Desvergne B, Wahli W. 1999. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J. Clin. Invest. 103:1489–1498. http://dx.doi.org/10.1172/JCI6223.
  • Lee P, Peng H, Gelbart T, Beutler E. 2004. The IL-6- and lipopolysaccharide-induced transcription of hepcidin in HFE-, transferrin receptor 2-, and β2-microglobulin-deficient hepatocytes. Proc. Natl. Acad. Sci. U. S. A. 101:9263–9265. http://dx.doi.org/10.1073/pnas.0403108101.
  • Ellis JM, Li LO, Wu PC, Koves TR, Ilkayeva O, Stevens RD, Watkins SM, Muoio DM, Coleman RA. 2010. Adipose acyl-CoA synthetase-1 directs fatty acids toward beta-oxidation and is required for cold thermogenesis. Cell Metab. 12:53–64. http://dx.doi.org/10.1016/j.cmet.2010.05.012.
  • Sakai M, Matsumoto M, Tujimura T, Yongheng C, Noguchi T, Inagaki K, Inoue H, Hosooka T, Takazawa K, Kido Y, Yasuda K, Hiramatsu R, Matsuki Y, Kasuga M. 2012. CITED2 links hormonal signaling to PGC-1α acetylation in the regulation of gluconeogenesis. Nat. Med. 18:612–617. http://dx.doi.org/10.1038/nm.2691.
  • Shishova EY, Stoll JM, Ersoy BA, Shrestha S, Scapa EF, Li Y, Niepel MW, Su Y, Jelicks LA, Stahl GL, Glicksman MA, Gutierrez-Juarez R, Cuny GD, Cohen DE. 2011. Genetic ablation or chemical inhibition of phosphatidylcholine transfer protein attenuates diet-induced hepatic glucose production. Hepatology 54:664–674. http://dx.doi.org/10.1002/hep.24393.
  • Lee AH, Scapa EF, Cohen DE, Glimcher LH. 2008. Regulation of hepatic lipogenesis by the transcription factor XBP1. Science 320:1492–1496. http://dx.doi.org/10.1126/science.1158042.
  • Burgess SC, He T, Yan Z, Lindner J, Sherry AD, Malloy CR, Browning JD, Magnuson MA. 2007. Cytosolic phosphoenolpyruvate carboxykinase does not solely control the rate of hepatic gluconeogenesis in the intact mouse liver. Cell Metab. 5:313–320. http://dx.doi.org/10.1016/j.cmet.2007.03.004.
  • Burgess SC, Leone TC, Wende AR, Croce MA, Chen Z, Sherry AD, Malloy CR, Finck BN. 2006. Diminished hepatic gluconeogenesis via defects in tricarboxylic acid cycle flux in peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α)-deficient mice. J. Biol. Chem. 281:19000–19008. http://dx.doi.org/10.1074/jbc.M600050200.
  • Chutkow WA, Patwari P, Yoshioka J, Lee RT. 2008. Thioredoxin-interacting protein (Txnip) is a critical regulator of hepatic glucose production. J. Biol. Chem. 283:2397–2406. http://dx.doi.org/10.1074/jbc.M708169200.
  • Foster DW. 2012. Malonyl-CoA: the regulator of fatty acid synthesis and oxidation. J. Clin. Invest. 122:1958–1959. http://dx.doi.org/10.1172/JCI63967.
  • Badman MK, Pissios P, Kennedy AR, Koukos G, Flier JS, Maratos-Flier E. 2007. Hepatic fibroblast growth factor 21 is regulated by PPARα and is a key mediator of hepatic lipid metabolism in ketotic states. Cell Metab. 5:426–437. http://dx.doi.org/10.1016/j.cmet.2007.05.002.
  • Potthoff MJ, Inagaki T, Satapati S, Ding X, He T, Goetz R, Mohammadi M, Finck BN, Mangelsdorf DJ, Kliewer SA, Burgess SC. 2009. FGF21 induces PGC-1α and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. U. S. A. 106:10853–10858. http://dx.doi.org/10.1073/pnas.0904187106.
  • Hondares E, Rosell M, Diaz-Delfin J, Olmos Y, Monsalve M, Iglesias R, Villarroya F, Giralt M. 2011. Peroxisome proliferator-activated receptor alpha (PPARα) induces PPARγ coactivator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J. Biol. Chem. 286:43112–43122. http://dx.doi.org/10.1074/jbc.M111.252775.
  • Kawano Y, Cohen DE. 2013. Mechanisms of hepatic triglyceride accumulation in non-alcoholic fatty liver disease. J. Gastroenterol. 48:434–441. http://dx.doi.org/10.1007/s00535-013-0758-5.
  • Wagle N, Xian J, Shishova EY, Wei J, Glicksman MA, Cuny GD, Stein RL, Cohen DE. 2008. Small-molecule inhibitors of phosphatidylcholine transfer protein/StarD2 identified by high-throughput screening. Anal. Biochem. 383:85–92. http://dx.doi.org/10.1016/j.ab.2008.07.039.
  • Lee K, Kerner J, Hoppel CL. 2011. Mitochondrial carnitine palmitoyltransferase 1a (CPT1a) is part of an outer membrane fatty acid transfer complex. J. Biol. Chem. 286:25655–25662. http://dx.doi.org/10.1074/jbc.M111.228692.
  • Kerner J, Hoppel C. 2000. Fatty acid import into mitochondria. Biochim. Biophys. Acta 1486:1–17. http://dx.doi.org/10.1016/S1388-1981(00)00044-5.
  • Rinaldo P, Matern D, Bennett MJ. 2002. Fatty acid oxidation disorders. Annu. Rev. Physiol. 64:477–502. http://dx.doi.org/10.1146/annurev.physiol.64.082201.154705.
  • Longuet C, Sinclair EM, Maida A, Baggio LL, Maziarz M, Charron MJ, Drucker DJ. 2008. The glucagon receptor is required for the adaptive metabolic response to fasting. Cell Metab. 8:359–371. http://dx.doi.org/10.1016/j.cmet.2008.09.008.
  • Owen OE, Kalhan SC, Hanson RW. 2002. The key role of anaplerosis and cataplerosis for citric acid cycle function. J. Biol. Chem. 277:30409–30412. http://dx.doi.org/10.1074/jbc.R200006200.
  • Jenkins CM, Yang J, Sims HF, Gross RW. 2011. Reversible high affinity inhibition of phosphofructokinase-1 by acyl-CoA: a mechanism integrating glycolytic flux with lipid metabolism. J. Biol. Chem. 286:11937–11950. http://dx.doi.org/10.1074/jbc.M110.203661.
  • Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115–124. http://dx.doi.org/10.1016/S0092-8674(00)80611-X.
  • Yoon MJ, Lee GY, Chung JJ, Ahn YH, Hong SH, Kim JB. 2006. Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes 55:2562–2570. http://dx.doi.org/10.2337/db05-1322.
  • Foretz M, Ancellin N, Andreelli F, Saintillan Y, Grondin P, Kahn A, Thorens B, Vaulont S, Viollet B. 2005. Short-term overexpression of a constitutively active form of AMP-activated protein kinase in the liver leads to mild hypoglycemia and fatty liver. Diabetes 54:1331–1339. http://dx.doi.org/10.2337/diabetes.54.5.1331.
  • Taylor EB, Ellingson WJ, Lamb JD, Chesser DG, Winder WW. 2005. Long-chain acyl-CoA esters inhibit phosphorylation of AMP-activated protein kinase at threonine-172 by LKB1/STRAD/MO25. Am. J. Physiol. Endocrinol. Metab. 288:E1055–E1061. http://dx.doi.org/10.1152/ajpendo.00516.2004.
  • Guillou H, Martin P, Jan S, D'Andrea S, Roulet A, Catheline D, Rioux V, Pineau T, Legrand P. 2002. Comparative effect of fenofibrate on hepatic desaturases in wild-type and peroxisome proliferator-activated receptor alpha-deficient mice. Lipids 37:981–989. http://dx.doi.org/10.1007/s11745-006-0990-3.
  • Tang C, Cho HP, Nakamura MT, Clarke SD. 2003. Regulation of human Δ-6 desaturase gene transcription: identification of a functional direct repeat-1 element. J. Lipid Res. 44:686–695. http://dx.doi.org/10.1194/jlr.M200195-JLR200.
  • Wheelock CE, Goto S, Hammock BD, Newman JW. 2007. Clofibrate-induced changes in the liver, heart, brain and white adipose lipid metabolome of Swiss-Webster mice. Metabolomics 3:137–145. http://dx.doi.org/10.1007/s11306-007-0052-8.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.