25
Views
22
CrossRef citations to date
0
Altmetric
Article

Physical and Functional Interaction between the Methyltransferase Bud23 and the Essential DEAH-Box RNA Helicase Ecm16

, , &
Pages 2208-2220 | Received 14 Dec 2013, Accepted 27 Mar 2014, Published online: 20 Mar 2023

REFERENCES

  • Shajani Z, Sykes MT, Williamson JR. 2011. Assembly of bacterial ribosomes. Annu. Rev. Biochem. 80:501–526. http://dx.doi.org/10.1146/annurev-biochem-062608-160432.
  • Fromont-Racine M, Senger B, Saveanu C, Fasiolo F. 2003. Ribosome assembly in eukaryotes. Gene 313:17–42. http://dx.doi.org/10.1016/S0378-1119(03)00629-2.
  • Woolford JLJr, Baserga SJ. 2013. Ribosome biogenesis in the yeast Saccharomyces cerevisiae. Genetics 195:643–681. http://dx.doi.org/10.1534/genetics.113.153197.
  • Kos M, Tollervey D. 2010. Yeast pre-rRNA processing and modification occur cotranscriptionally. Mol. Cell 37:809–820. http://dx.doi.org/10.1016/j.molcel.2010.02.024.
  • Sykes MT, Williamson JR. 2009. A complex assembly landscape for the 30S ribosomal subunit. Annu. Rev. Biophys. 38:197–215. http://dx.doi.org/10.1146/annurev.biophys.050708.133615.
  • Woodson SA. 2011. RNA folding pathways and the self-assembly of ribosomes. Acc. Chem. Res. 44:1312–1319. http://dx.doi.org/10.1021/ar2000474.
  • Henras AK, Soudet J, Gerus M, Lebaron S, Caizergues-Ferrer M, Mougin A, Henry Y. 2008. The post-transcriptional steps of eukaryotic ribosome biogenesis. Cell Mol. Life Sci. 65:2334–2359. http://dx.doi.org/10.1007/s00018-008-8027-0.
  • Karbstein K. 2011. Inside the 40S ribosome assembly machinery. Curr. Opin. Chem. Biol. 15:657–663. http://dx.doi.org/10.1016/j.cbpa.2011.07.023.
  • Tschochner H, Hurt E. 2003. Pre-ribosomes on the road from the nucleolus to the cytoplasm. Trends Cell Biol. 13:255–263. http://dx.doi.org/10.1016/S0962-8924(03)00054-0.
  • Dragon F, Gallagher JE, Compagnone-Post PA, Mitchell BM, Porwancher KA, Wehner KA, Wormsley S, Settlage RE, Shabanowitz J, Osheim Y, Beyer AL, Hunt DF, Baserga SJ. 2002. A large nucleolar U3 ribonucleoprotein required for 18S ribosomal RNA biogenesis. Nature 417:967–970. http://dx.doi.org/10.1038/nature00769.
  • Grandi P, Rybin V, Bassler J, Petfalski E, Strauss D, Marzioch M, Schafer T, Kuster B, Tschochner H, Tollervey D, Gavin AC, Hurt E. 2002. 90S pre-ribosomes include the 35S pre-rRNA, the U3 snoRNP, and 40S subunit processing factors but predominantly lack 60S synthesis factors. Mol. Cell 10:105–115. http://dx.doi.org/10.1016/S1097-2765(02)00579-8.
  • Schafer T, Strauss D, Petfalski E, Tollervey D, Hurt E. 2003. The path from nucleolar 90S to cytoplasmic 40S pre-ribosomes. EMBO J. 22:1370–1380. http://dx.doi.org/10.1093/emboj/cdg121.
  • Venema J, Tollervey D. 1995. Processing of pre-ribosomal RNA in Saccharomyces cerevisiae. Yeast 11:1629–1650. http://dx.doi.org/10.1002/yea.320111607.
  • Dutca LM, Gallagher JE, Baserga SJ. 2011. The initial U3 snoRNA:pre-rRNA base pairing interaction required for pre-18S rRNA folding revealed by in vivo chemical probing. Nucleic Acids Res. 39:5164–5180. http://dx.doi.org/10.1093/nar/gkr044.
  • Hughes JM, Ares MJr. 1991. Depletion of U3 small nucleolar RNA inhibits cleavage in the 5′ external transcribed spacer of yeast pre-ribosomal RNA and impairs formation of 18S ribosomal RNA. EMBO J. 10:4231–4239.
  • Kass S, Tyc K, Steitz JA, Sollner-Webb B. 1990. The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing. Cell 60:897–908. http://dx.doi.org/10.1016/0092-8674(90)90338-F.
  • Phipps KR, Charette J, Baserga SJ. 2011. The small subunit processome in ribosome biogenesis-progress and prospects. Wiley Interdiscip. Rev. RNA 2:1–21. http://dx.doi.org/10.1002/wrna.57.
  • Kressler D, Hurt E, Bassler J. 2010. Driving ribosome assembly. Biochim. Biophys. Acta 1803:673–683. http://dx.doi.org/10.1016/j.bbamcr.2009.10.009.
  • Kressler D, Hurt E, Bergler H, Bassler J. 2012. The power of AAA-ATPases on the road of pre-60S ribosome maturation–molecular machines that strip pre-ribosomal particles. Biochim. Biophys. Acta 1823:92–100. http://dx.doi.org/10.1016/j.bbamcr.2011.06.017.
  • Strunk BS, Karbstein K. 2009. Powering through ribosome assembly. RNA 15:2083–2104. http://dx.doi.org/10.1261/rna.1792109.
  • Bernstein KA, Granneman S, Lee AV, Manickam S, Baserga SJ. 2006. Comprehensive mutational analysis of yeast DEXD/H box RNA helicases involved in large ribosomal subunit biogenesis. Mol. Cell. Biol. 26:1195–1208. http://dx.doi.org/10.1128/MCB.26.4.1195-1208.2006.
  • Granneman S, Bernstein KA, Bleichert F, Baserga SJ. 2006. Comprehensive mutational analysis of yeast DEXD/H box RNA helicases required for small ribosomal subunit synthesis. Mol. Cell. Biol. 26:1183–1194. http://dx.doi.org/10.1128/MCB.26.4.1183-1194.2006.
  • Martin R, Straub AU, Doebele C, Bohnsack MT. 2013. DExD/H-box RNA helicases in ribosome biogenesis. RNA Biol. 10:4–18. http://dx.doi.org/10.4161/rna.21879.
  • Rodriguez-Galan O, Garcia-Gomez JJ, de la Cruz J. 2013. Yeast and human RNA helicases involved in ribosome biogenesis: current status and perspectives. Biochim. Biophys. Acta 1829:775–790. http://dx.doi.org/10.1016/j.bbagrm.2013.01.007.
  • Bohnsack MT, Kos M, Tollervey D. 2008. Quantitative analysis of snoRNA association with pre-ribosomes and release of snR30 by Rok1 helicase. EMBO Rep. 9:1230–1236. http://dx.doi.org/10.1038/embor.2008.184.
  • Kos M, Tollervey D. 2005. The putative RNA helicase Dbp4p is required for release of the U14 snoRNA from preribosomes in Saccharomyces cerevisiae. Mol. Cell 20:53–64. http://dx.doi.org/10.1016/j.molcel.2005.08.022.
  • Liang XH, Fournier MJ. 2006. The helicase Has1p is required for snoRNA release from pre-rRNA. Mol. Cell. Biol. 26:7437–7450. http://dx.doi.org/10.1128/MCB.00664-06.
  • Bohnsack MT, Martin R, Granneman S, Ruprecht M, Schleiff E, Tollervey D. 2009. Prp43 bound at different sites on the pre-rRNA performs distinct functions in ribosome synthesis. Mol. Cell 36:583–592. http://dx.doi.org/10.1016/j.molcel.2009.09.039.
  • Staley JP, Woolford JLJr. 2009. Assembly of ribosomes and spliceosomes: complex ribonucleoprotein machines. Curr. Opin. Cell Biol. 21:109–118. http://dx.doi.org/10.1016/j.ceb.2009.01.003.
  • Jankowsky E. 2011. RNA helicases at work: binding and rearranging. Trends Biochem. Sci. 36:19–29. http://dx.doi.org/10.1016/j.tibs.2010.07.008.
  • Silverman E, Edwalds-Gilbert G, Lin RJ. 2003. DExD/H-box proteins and their partners: helping RNA helicases unwind. Gene 312:1–16. http://dx.doi.org/10.1016/S0378-1119(03)00626-7.
  • White J, Li Z, Sardana R, Bujnicki JM, Marcotte EM, Johnson AW. 2008. Bud23 methylates G1575 of 18S rRNA and is required for efficient nuclear export of pre-40S subunits. Mol. Cell. Biol. 28:3151–3161. http://dx.doi.org/10.1128/MCB.01674-07.
  • Sardana R, White JP, Johnson AW. 2013. The rRNA methyltransferase Bud23 shows functional interaction with components of the SSU processome and RNase MRP. RNA 19:828–840. http://dx.doi.org/10.1261/rna.037671.112.
  • Louvet O, Doignon F, Crouzet M. 1997. Stable DNA-binding yeast vector allowing high-bait expression for use in the two-hybrid system. Biotechniques 23:816–818, 820.
  • James P, Halladay J, Craig EA. 1996. Genomic libraries and a host strain designed for highly efficient two-hybrid selection in yeast. Genetics 144:1425–1436.
  • Li Z, Lee I, Moradi E, Hung NJ, Johnson AW, Marcotte EM. 2009. Rational extension of the ribosome biogenesis pathway using network-guided genetics. PLoS Biol. 7:e1000213. http://dx.doi.org/10.1371/journal.pbio.1000213.
  • Walbott H, Mouffok S, Capeyrou R, Lebaron S, Humbert O, van Tilbeurgh H, Henry Y, Leulliot N. 2010. Prp43p contains a processive helicase structural architecture with a specific regulatory domain. EMBO J. 29:2194–2204. http://dx.doi.org/10.1038/emboj.2010.102.
  • Figaro S, Wacheul L, Schillewaert S, Graille M, Huvelle E, Mongeard R, Zorbas C, Lafontaine DL, Heurgue-Hamard V. 2012. Trm112 is required for Bud23-mediated methylation of the 18S rRNA at position G1575. Mol. Cell. Biol. 32:2254–2267. http://dx.doi.org/10.1128/MCB.06623-11.
  • Sardana R, Johnson AW. 2012. The methyltransferase adaptor protein Trm112 is involved in biogenesis of both ribosomal subunits. Mol. Biol. Cell 23:4313–4322. http://dx.doi.org/10.1091/mbc.E12-05-0370.
  • Bussiere C, Hashem Y, Arora S, Frank J, Johnson AW. 2012. Integrity of the P-site is probed during maturation of the 60S ribosomal subunit. J. Cell Biol. 197:747–759. http://dx.doi.org/10.1083/jcb.201112131.
  • Lo KY, Li Z, Bussiere C, Bresson S, Marcotte EM, Johnson AW. 2010. Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. Mol. Cell 39:196–208. http://dx.doi.org/10.1016/j.molcel.2010.06.018.
  • Panse VG, Johnson AW. 2010. Maturation of eukaryotic ribosomes: acquisition of functionality. Trends Biochem. Sci. 35:260–266. http://dx.doi.org/10.1016/j.tibs.2010.01.001.
  • Lebaron S, Papin C, Capeyrou R, Chen YL, Froment C, Monsarrat B, Caizergues-Ferrer M, Grigoriev M, Henry Y. 2009. The ATPase and helicase activities of Prp43p are stimulated by the G-patch protein Pfa1p during yeast ribosome biogenesis. EMBO J. 28:3808–3819. http://dx.doi.org/10.1038/emboj.2009.335.
  • Tsai RT, Tseng CK, Lee PJ, Chen HC, Fu RH, Chang KJ, Yeh FL, Cheng SC. 2007. Dynamic interactions of Ntr1-Ntr2 with Prp43 and with U5 govern the recruitment of Prp43 to mediate spliceosome disassembly. Mol. Cell. Biol. 27:8027–8037. http://dx.doi.org/10.1128/MCB.01213-07.
  • Granneman S, Lin C, Champion EA, Nandineni MR, Zorca C, Baserga SJ. 2006. The nucleolar protein Esf2 interacts directly with the DExD/H box RNA helicase, Dbp8, to stimulate ATP hydrolysis. Nucleic Acids Res. 34:3189–3199. http://dx.doi.org/10.1093/nar/gkl419.
  • Liger D, Mora L, Lazar N, Figaro S, Henri J, Scrima N, Buckingham RH, van Tilbeurgh H, Heurgue-Hamard V, Graille M. 2011. Mechanism of activation of methyltransferases involved in translation by the Trm112 ‘hub' protein. Nucleic Acids Res. 39:6249–6259. http://dx.doi.org/10.1093/nar/gkr176.
  • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, Ignatchenko A, Li J, Pu S, Datta N, Tikuisis AP, Punna T, Peregrin-Alvarez JM, Shales M, Zhang X, Davey M, Robinson MD, Paccanaro A, Bray JE, Sheung A, Beattie B, Richards DP, Canadien V, Lalev A, Mena F, Wong P, Starostine A, Canete MM, Vlasblom J, Wu S, Orsi C, Collins SR, Chandran S, Haw R, Rilstone JJ, Gandi K, Thompson NJ, Musso G, St Onge P, Ghanny S, Lam MH, Butland G, Altaf-Ul AM, Kanaya S, Shilatifard A, O'Shea E, Weissman JS, Ingles CJ, Hughes TR, Parkinson J, Gerstein M, Wodak SJ, Emili A, Greenblatt JF. 2006. Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440:637–643. http://dx.doi.org/10.1038/nature04670.
  • Huh WK, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea EK. 2003. Global analysis of protein localization in budding yeast. Nature 425:686–691. http://dx.doi.org/10.1038/nature02026.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.