38
Views
38
CrossRef citations to date
0
Altmetric
Article

SRSF10 Regulates Alternative Splicing and Is Required for Adipocyte Differentiation

, , , , , , & show all
Pages 2198-2207 | Received 18 Dec 2013, Accepted 25 Mar 2014, Published online: 20 Mar 2023

REFERENCES

  • Boutz PL, Stoilov P, Li Q, Lin CH, Chawla G, Ostrow K, Shiue L, Ares MJr, Black DL. 2007. A post-transcriptional regulatory switch in polypyrimidine tract-binding proteins reprograms alternative splicing in developing neurons. Genes Dev. 21:1636–1652. http://dx.doi.org/10.1101/gad.1558107.
  • Feng Y, Valley MT, Lazar J, Yang AL, Bronson RT, Firestein S, Coetzee WA, Manley JL. 2009. SRp38 regulates alternative splicing and is required for Ca(2+) handling in the embryonic heart. Dev. Cell 16:528–538. http://dx.doi.org/10.1016/j.devcel.2009.02.009.
  • Wang HY, Xu X, Ding JH, Bermingham JRJr, Fu XD. 2001. SC35 plays a role in T cell development and alternative splicing of CD45. Mol. Cell 7:331–342. http://dx.doi.org/10.1016/S1097-2765(01)00181-2.
  • Xu X, Yang D, Ding JH, Wang W, Chu PH, Dalton ND, Wang HY, Bermingham JRJr, Ye Z, Liu F, Rosenfeld MG, Manley JL, Ross JJr, Chen J, Xiao RP, Cheng H, Fu XD. 2005. ASF/SF2-regulated CaMKIIdelta alternative splicing temporally reprograms excitation-contraction coupling in cardiac muscle. Cell 120:59–72. http://dx.doi.org/10.1016/j.cell.2004.11.036.
  • Scherer PE. 2006. Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55:1537–1545. http://dx.doi.org/10.2337/db06-0263.
  • Kershaw EE, Flier JS. 2004. Adipose tissue as an endocrine organ. J. Clin. Endocr. Metab. 89:2548–2556. http://dx.doi.org/10.1210/jc.2004-0395.
  • Goodson ML, Mengeling BJ, Jonas BA, Privalsky ML. 2011. Alternative mRNA splicing of corepressors generates variants that play opposing roles in adipocyte differentiation. J. Biol. Chem. 286:44988–44999. http://dx.doi.org/10.1074/jbc.M111.291625.
  • Peterfy M, Phan J, Reue K. 2005. Alternatively spliced lipin isoforms exhibit distinct expression pattern, subcellular localization, and role in adipogenesis. J. Biol. Chem. 280:32883–32889. http://dx.doi.org/10.1074/jbc.M503885200.
  • Huot ME, Vogel G, Zabarauskas A, Ngo CT, Coulombe-Huntington J, Majewski J, Richard S. 2012. The Sam68 STAR RNA-binding protein regulates mTOR alternative splicing during adipogenesis. Mol. Cell 46:187–199. http://dx.doi.org/10.1016/j.molcel.2012.02.007.
  • Feng Y, Chen M, Manley JL. 2008. Phosphorylation switches the general splicing repressor SRp38 to a sequence-specific activator. Nat. Struct. Mol. Biol. 15:1040–1048. http://dx.doi.org/10.1038/nsmb.1485.
  • Ross SE, Hemati N, Longo KA, Bennett CN, Lucas PC, Erickson RL, MacDougald OA. 2000. Inhibition of adipogenesis by Wnt signaling. Science 289:950–953. http://dx.doi.org/10.1126/science.289.5481.950.
  • Wellen KE, Hatzivassiliou G, Sachdeva UM, Bui TV, Cross JR, Thompson CB. 2009. ATP-citrate lyase links cellular metabolism to histone acetylation. Science 324:1076–1080. http://dx.doi.org/10.1126/science.1164097.
  • Sanchez-Solana B, Li DQ, Kumar R. 2014. Cytosolic functions of MORC2 in lipogenesis and adipogenesis. Biochim. Biophys. Acta 1843:316–326. http://dx.doi.org/10.1016/j.bbamcr.2013.11.012.
  • Cho H, Kim KM, Han S, Choe J, Park SG, Choi SS, Kim YK. 2012. Staufen1-mediated mRNA decay functions in adipogenesis. Mol. Cell 46:495–506. http://dx.doi.org/10.1016/j.molcel.2012.03.009.
  • Reue K, Brindley DN. 2008. Glycerolipids. Multiple roles for lipins/phosphatidate phosphatase enzymes in lipid metabolism. J. Lipid Res. 49:2493–2503. http://dx.doi.org/10.1194/jlr.R800019-JLR200.
  • Samuelson LC, Metzger JM. 2006. Isolation and freezing of primary mouse embryonic fibroblasts (MEF) for feeder plates. Cold Spring Harb. Protoc. http://dx.doi.org/10.1101/pdb.prot4482.
  • Ory DS, Neugeboren BA, Mulligan RC. 1996. A stable human-derived packaging cell line for production of high titer retrovirus/vesicular stomatitis virus G pseudotypes. Proc. Natl. Acad. Sci. U. S. A. 93:11400–11406. http://dx.doi.org/10.1073/pnas.93.21.11400.
  • Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM. 1999. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol. Cell 4:611–617. http://dx.doi.org/10.1016/S1097-2765(00)80211-7.
  • Trapnell C, Pachter L, Salzberg SL. 2009. TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111. http://dx.doi.org/10.1093/bioinformatics/btp120.
  • Li H, Wang Z, Zhou X, Cheng Y, Xie Z, Manley JL, Feng Y. 2013. Far upstream element-binding protein 1 and RNA secondary structure both mediate second-step splicing repression. Proc. Natl. Acad. Sci. U. S. A. 110:E2687–2695. http://dx.doi.org/10.1073/pnas.1310607110.
  • Asaki T, Konishi M, Miyake A, Kato S, Tomizawa M, Itoh N. 2004. Roles of fibroblast growth factor 10 (Fgf10) in adipogenesis in vivo. Mol. Cell. Endocrinol. 218:119–128. http://dx.doi.org/10.1016/j.mce.2003.12.017.
  • Tang QQ, Lane MD. 2012. Adipogenesis: from stem cell to adipocyte. Annu. Rev. Biochem. 81:715–736. http://dx.doi.org/10.1146/annurev-biochem-052110-115718.
  • Katz Y, Wang ET, Airoldi EM, Burge CB. 2010. Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat. Methods 7:1009–1015. http://dx.doi.org/10.1038/nmeth.1528.
  • Shin C, Manley JL. 2002. The SR protein SRp38 represses splicing in M phase cells. Cell 111:407–417. http://dx.doi.org/10.1016/S0092-8674(02)01038-3.
  • Ghigna C, Giordano S, Shen H, Benvenuto F, Castiglioni F, Comoglio PM, Green MR, Riva S, Biamonti G. 2005. Cell motility is controlled by SF2/ASF through alternative splicing of the Ron protooncogene. Mol. Cell 20:881–890. http://dx.doi.org/10.1016/j.molcel.2005.10.026.
  • David CJ, Chen M, Assanah M, Canoll P, Manley JL. 2010. HnRNP proteins controlled by c-Myc deregulate pyruvate kinase mRNA splicing in cancer. Nature 463:364–368. http://dx.doi.org/10.1038/nature08697.
  • Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, Wei R, Fleming MD, Schreiber SL, Cantley LC. 2008. The M2 splice isoform of pyruvate kinase is important for cancer metabolism and tumour growth. Nature 452:230–U274. http://dx.doi.org/10.1038/nature06734.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.