138
Views
105
CrossRef citations to date
0
Altmetric
Article

Roles of CLOCK Phosphorylation in Suppression of E-Box-Dependent Transcription

, , , , &
Pages 3675-3686 | Received 06 Dec 2008, Accepted 15 Apr 2009, Published online: 21 Mar 2023

REFERENCES

  • Akashi, M., Y. Tsuchiya, T. Yoshino, and E. Nishida. 2002. Control of intracellular dynamics of mammalian period proteins by casein kinase I ε (CKIε) and CKIδ in cultured cells. Mol. Cell. Biol. 22:1693–1703.
  • Antoch, M., E. Song, A. Chang, M. Vitaterna, Y. Zhao, L. Wilsbacher, A. Sangoram, D. King, L. Pinto, and J. Takahashi. 1997. Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell 89:655–667.
  • Balsalobre, A., S. Brown, L. Marcacci, F. Tronche, C. Kellendonk, H. Reichardt, G. Schütz, and U. Schibler. 2000. Resetting of circadian time in peripheral tissues by glucocorticoid signaling. Science 289:2344–2347.
  • Balsalobre, A., F. Damiola, and U. Schibler. 1998. A serum shock induces circadian gene expression in mammalian tissue culture cells. Cell 93:929–937.
  • Brown, S., J. Ripperger, S. Kadener, F. Fleury-Olela, F. Vilbois, M. Rosbash, and U. Schibler. 2005. PERIOD1-associated proteins modulate the negative limb of the mammalian circadian oscillator. Science 308:693–696.
  • Dardente, H., E. Fortier, V. Martineau, and N. Cermakian. 2007. Cryptochromes impair phosphorylation of transcriptional activators in the clock: a general mechanism for circadian repression. Biochem. J. 402:525–536.
  • Dignam, J., R. Lebovitz, and R. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Doi, M., J. Hirayama, and P. Sassone-Corsi. 2006. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125:497–508.
  • Dunlap, J. 1999. Molecular bases for circadian clocks. Cell 96:271–290.
  • Eide, E., E. Vielhaber, W. Hinz, and D. Virshup. 2002. The circadian regulatory proteins BMAL1 and cryptochromes are substrates of casein kinase Iepsilon. J. Biol. Chem. 277:17248–17254.
  • Eide, E., M. Woolf, H. Kang, P. Woolf, W. Hurst, F. Camacho, E. Vielhaber, A. Giovanni, and D. Virshup. 2005. Control of mammalian circadian rhythm by CKIε-regulated proteasome-mediated PER2 degradation. Mol. Cell. Biol. 25:2795–2807.
  • Gallego, M., H. Kang, and D. Virshup. 2006. Protein phosphatase 1 regulates the stability of the circadian protein PER2. Biochem. J. 399:169–175.
  • Gallego, M., and D. Virshup. 2007. Post-translational modifications regulate the ticking of the circadian clock. Nat. Rev. Mol. Cell Biol. 8:139–148.
  • Gekakis, N., D. Staknis, H. Nguyen, F. Davis, L. Wilsbacher, D. King, J. Takahashi, and C. Weitz. 1998. Role of the CLOCK protein in the mammalian circadian mechanism. Science 280:1564–1569.
  • Harada, Y., M. Sakai, N. Kurabayashi, T. Hirota, and Y. Fukada. 2005. Ser-557-phosphorylated mCRY2 is degraded upon synergistic phosphorylation by glycogen synthase kinase-3 beta. J. Biol. Chem. 280:31714–31721.
  • He, Q., J. Cha, H. Lee, Y. Yang, and Y. Liu. 2006. CKI and CKII mediate the FREQUENCY-dependent phosphorylation of the WHITE COLLAR complex to close the Neurospora circadian negative feedback loop. Genes Dev. 20:2552–2565.
  • He, Q., H. Shu, P. Cheng, S. Chen, L. Wang, and Y. Liu. 2005. Light-independent phosphorylation of WHITE COLLAR-1 regulates its function in the Neurospora circadian negative feedback loop. J. Biol. Chem. 280:17526–17532.
  • Hirota, T., and Y. Fukada. 2004. Resetting mechanism of central and peripheral circadian clocks in mammals. Zoolog. Sci. 21:359–368.
  • Hirota, T., T. Okano, K. Kokame, H. Shirotani-Ikejima, T. Miyata, and Y. Fukada. 2002. Glucose down-regulates Per1 and Per2 mRNA levels and induces circadian gene expression in cultured Rat-1 fibroblasts. J. Biol. Chem. 277:44244–44251.
  • Honma, S., T. Kawamoto, Y. Takagi, K. Fujimoto, F. Sato, M. Noshiro, Y. Kato, and K. Honma. 2002. Dec1 and Dec2 are regulators of the mammalian molecular clock. Nature 419:841–844.
  • Huang, G., S. Chen, S. Li, J. Cha, C. Long, L. Li, Q. He, and Y. Liu. 2007. Protein kinase A and casein kinases mediate sequential phosphorylation events in the circadian negative feedback loop. Genes Dev. 21:3283–3295.
  • Kim, E., and I. Edery. 2006. Balance between DBT/CKIepsilon kinase and protein phosphatase activities regulate phosphorylation and stability of Drosophila CLOCK protein. Proc. Natl. Acad. Sci. USA 103:6178–6183.
  • Kim, E., H. Ko, W. Yu, P. Hardin, and I. Edery. 2007. A DOUBLETIME kinase binding domain on the Drosophila PERIOD protein is essential for its hyperphosphorylation, transcriptional repression, and circadian clock function. Mol. Cell. Biol. 27:5014–5028.
  • King, D., Y. Zhao, A. Sangoram, L. Wilsbacher, M. Tanaka, M. Antoch, T. Steeves, M. Vitaterna, J. Kornhauser, P. Lowrey, F. Turek, and J. Takahashi. 1997. Positional cloning of the mouse circadian clock gene. Cell 89:641–653.
  • Kiyohara, Y., K. Nishii, M. Ukai-Tadenuma, H. Ueda, Y. Uchiyama, and K. Yagita. 2008. Detection of a circadian enhancer in the mDbp promoter using prokaryotic transposon vector-based strategy. Nucleic Acids Res. 36:e23.
  • Köhler, G., and C. Milstein. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–497.
  • Kon, N., T. Hirota, T. Kawamoto, Y. Kato, T. Tsubota, and Y. Fukada. 2008. Activation of TGF-beta/activin signalling resets the circadian clock through rapid induction of Dec1 transcripts. Nat. Cell Biol. 10:1463–1469.
  • Kondratov, R., M. Chernov, A. Kondratova, V. Gorbacheva, A. Gudkov, and M. Antoch. 2003. BMAL1-dependent circadian oscillation of nuclear CLOCK: posttranslational events induced by dimerization of transcriptional activators of the mammalian clock system. Genes Dev. 17:1921–1932.
  • Kondratov, R., A. Kondratova, C. Lee, V. Gorbacheva, M. Chernov, and M. Antoch. 2006. Post-translational regulation of circadian transcriptional CLOCK(NPAS2)/BMAL1 complex by CRYPTOCHROMES. Cell Cycle 5:890–895.
  • Kume, K., M. Zylka, S. Sriram, L. Shearman, D. Weaver, X. Jin, E. Maywood, M. Hastings, and S. Reppert. 1999. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell 98:193–205.
  • Kwon, I., J. Lee, S. Chang, N. Jung, B. Lee, G. Son, K. Kim, and K. Lee. 2006. BMAL1 shuttling controls transactivation and degradation of the CLOCK/BMAL1 heterodimer. Mol. Cell. Biol. 26:7318–7330.
  • Lee, C., J. Etchegaray, F. Cagampang, A. Loudon, and S. Reppert. 2001. Posttranslational mechanisms regulate the mammalian circadian clock. Cell 107:855–867.
  • Li, C., R. Wu, L. Amazit, S. Tsai, M. Tsai, and B. O'Malley. 2007. Specific amino acid residues in the basic helix-loop-helix domain of SRC-3 are essential for its nuclear localization and proteasome-dependent turnover. Mol. Cell. Biol. 27:1296–1308.
  • Métivier, R., G. Penot, M. Hübner, G. Reid, H. Brand, M. Kos, and F. Gannon. 2003. Estrogen receptor-alpha directs ordered, cyclical, and combinatorial recruitment of cofactors on a natural target promoter. Cell 115:751–763.
  • Muratani, M., and W. Tansey. 2003. How the ubiquitin-proteasome system controls transcription. Nat. Rev. Mol. Cell Biol. 4:192–201.
  • Nagoshi, E., C. Saini, C. Bauer, T. Laroche, F. Naef, and U. Schibler. 2004. Circadian gene expression in individual fibroblasts: cell-autonomous and self-sustained oscillators pass time to daughter cells. Cell 119:693–705.
  • Nawathean, P., D. Stoleru, and M. Rosbash. 2007. A small conserved domain of Drosophila PERIOD is important for circadian phosphorylation, nuclear localization, and transcriptional repressor activity. Mol. Cell. Biol. 27:5002–5013.
  • Okano, T., K. Yamamoto, K. Okano, T. Hirota, T. Kasahara, M. Sasaki, Y. Takanaka, and Y. Fukada. 2001. Chicken pineal clock genes: implication of BMAL2 as a bidirectional regulator in circadian clock oscillation. Genes Cells 6:825–836.
  • Partch, C., K. Shields, C. Thompson, C. Selby, and A. Sancar. 2006. Posttranslational regulation of the mammalian circadian clock by cryptochrome and protein phosphatase 5. Proc. Natl. Acad. Sci. USA 103:10467–10472.
  • Reppert, S., and D. Weaver. 2002. Coordination of circadian timing in mammals. Nature 418:935–941.
  • Ripperger, J., and U. Schibler. 2006. Rhythmic CLOCK-BMAL1 binding to multiple E-box motifs drives circadian Dbp transcription and chromatin transitions. Nat. Genet. 38:369–374.
  • Sanada, K., T. Okano, and Y. Fukada. 2002. Mitogen-activated protein kinase phosphorylates and negatively regulates basic helix-loop-helix-PAS transcription factor BMAL1. J. Biol. Chem. 277:267–271.
  • Sathyanarayanan, S., X. Zheng, R. Xiao, and A. Sehgal. 2004. Posttranslational regulation of Drosophila PERIOD protein by protein phosphatase 2A. Cell 116:603–615.
  • Schafmeier, T., A. Haase, K. Káldi, J. Scholz, M. Fuchs, and M. Brunner. 2005. Transcriptional feedback of Neurospora circadian clock gene by phosphorylation-dependent inactivation of its transcription factor. Cell 122:235–246.
  • Schibler, U., and P. Sassone-Corsi. 2002. A web of circadian pacemakers. Cell 111:919–922.
  • Shearman, L., X. Jin, C. Lee, S. Reppert, and D. Weaver. 2000. Targeted disruption of the mPer3 gene: subtle effects on circadian clock function. Mol. Cell. Biol. 20:6269–6275.
  • Shim, H., H. Kim, J. Lee, G. Son, S. Cho, T. Oh, S. Kang, D. Seen, K. Lee, and K. Kim. 2007. Rapid activation of CLOCK by Ca2+-dependent protein kinase C mediates resetting of the mammalian circadian clock. EMBO Rep. 8:366–371.
  • Takano, A., Y. Isojima, and K. Nagai. 2004. Identification of mPer1 phosphorylation sites responsible for the nuclear entry. J. Biol. Chem. 279:32578–32585.
  • Takano, A., K. Shimizu, S. Kani, R. Buijs, M. Okada, and K. Nagai. 2000. Cloning and characterization of rat casein kinase 1epsilon. FEBS Lett. 477:106–112.
  • Tamaru, T., Y. Isojima, G. van der Horst, K. Takei, K. Nagai, and K. Takamatsu. 2003. Nucleocytoplasmic shuttling and phosphorylation of BMAL1 are regulated by circadian clock in cultured fibroblasts. Genes Cells 8:973–983.
  • Tansey, W. 2001. Transcriptional activation: risky business. Genes Dev. 15:1045–1050.
  • Tischkau, S., J. Mitchell, L. Pace, J. Barnes, J. Barnes, and M. Gillette. 2004. Protein kinase G type II is required for night-to-day progression of the mammalian circadian clock. Neuron 43:539–549.
  • Toh, K., C. Jones, Y. He, E. Eide, W. Hinz, D. Virshup, L. Ptácek, and Y. Fu. 2001. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291:1040–1043.
  • Ueda, H., S. Hayashi, W. Chen, M. Sano, M. Machida, Y. Shigeyoshi, M. Iino, and S. Hashimoto. 2005. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37:187–192.
  • Vanselow, K., J. Vanselow, P. Westermark, S. Reischl, B. Maier, T. Korte, A. Herrmann, H. Herzel, A. Schlosser, and A. Kramer. 2006. Differential effects of PER2 phosphorylation: molecular basis for the human familial advanced sleep phase syndrome (FASPS). Genes Dev. 20:2660–2672.
  • Vielhaber, E., D. Duricka, K. Ullman, and D. Virshup. 2001. Nuclear export of mammalian PERIOD proteins. J. Biol. Chem. 276:45921–45927.
  • Vielhaber, E., E. Eide, A. Rivers, Z. Gao, and D. Virshup. 2000. Nuclear entry of the circadian regulator mPER1 is controlled by mammalian casein kinase I ε. Mol. Cell. Biol. 20:4888–4899.
  • Vitaterna, M., D. King, A. Chang, J. Kornhauser, P. Lowrey, J. McDonald, W. Dove, L. Pinto, F. Turek, and J. Takahashi. 1994. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264:719–725.
  • Yagita, K., F. Tamanini, M. Yasuda, J. Hoeijmakers, G. van der Horst, and H. Okamura. 2002. Nucleocytoplasmic shuttling and mCRY-dependent inhibition of ubiquitylation of the mPER2 clock protein. EMBO J. 21:1301–1314.
  • Yagita, K., S. Yamaguchi, F. Tamanini, G. van der Horst, J. Hoeijmakers, A. Yasui, J. Loros, J. Dunlap, and H. Okamura. 2000. Dimerization and nuclear entry of mPER proteins in mammalian cells. Genes Dev. 14:1353–1363.
  • Yoo, S., C. Ko, P. Lowrey, E. Buhr, E. Song, S. Chang, O. Yoo, S. Yamazaki, C. Lee, and J. Takahashi. 2005. A noncanonical E-box enhancer drives mouse Period2 circadian oscillations in vivo. Proc. Natl. Acad. Sci. USA 102:2608–2613.
  • Yu, W., H. Zheng, J. Houl, B. Dauwalder, and P. Hardin. 2006. PER-dependent rhythms in CLK phosphorylation and E-box binding regulate circadian transcription. Genes Dev. 20:723–733.
  • Zhao, W., N. Malinin, F. Yang, D. Staknis, N. Gekakis, B. Maier, S. Reischl, A. Kramer, and C. Weitz. 2007. CIPC is a mammalian circadian clock protein without invertebrate homologues. Nat. Cell Biol. 9:268–275.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.