12
Views
33
CrossRef citations to date
0
Altmetric
Article

Prion Protein Repeat Expansion Results in Increased Aggregation and Reveals Phenotypic Variability

, , &
Pages 5445-5455 | Received 14 Nov 2006, Accepted 21 May 2007, Published online: 27 Mar 2023

REFERENCES

  • Bagriantsev, S., and S. W. Liebman. 2004. Specificity of prion assembly in vivo. J. Biol. Chem. 279:51042–51048.
  • Bessen, R. A., D. A. Kocisko, G. J. Raymond, S. Nandan, P. T. Lansbury, and B. Caughey. 1995. Non-genetic propagation of strain-specific properties of scrapie prion protein. Nature 375:698–700.
  • Bessen, R. A., and R. F. Marsh. 1992. Identification of two biologically distinct strains of transmissible mink encephalopathy in hamsters. J. Gen. Virol. 73(Pt. 2):329–334.
  • Borchsenius, A. S., S. Muller, G. P. Newnam, S. G. Inge-Vechtomov, and Y. O. Chernoff. 2006. Prion variant maintained only at high levels of the Hsp104 disaggregase. Curr. Genet. 49:21–29.
  • Borchsenius, A. S., R. D. Wegrzyn, G. P. Newnam, S. G. Inge-Vechtomov, and Y. O. Chernoff. 2001. Yeast prion protein derivative defective in aggregate shearing and production of new ‘seeds’. EMBO J. 20:6683–6691.
  • Bousset, L., and R. Melki. 2002. Similar and divergent features in mammalian and yeast prions. Microbes Infect. 4:461–469.
  • Brown, P., C. J. Gibbs, Jr., P. Rodgers-Johnson, D. M. Asher, M. P. Sulima, A. Bacote, L. G. Goldfarb, and D. C. Gajdusek. 1994. Human spongiform encephalopathy: the National Institutes of Health series of 300 cases of experimentally transmitted disease. Ann. Neurol. 35:513–529.
  • Castilla, J., A. Gutierrez-Adan, A. Brun, B. Pintado, F. J. Salguero, B. Parra, F. D. Segundo, M. A. Ramirez, A. Rabano, M. J. Cano, and J. M. Torres. 2005. Transgenic mice expressing bovine PrP with a four extra repeat octapeptide insert mutation show a spontaneous, non-transmissible, neurodegenerative disease and an expedited course of BSE infection. FEBS Lett. 579:6237–6246.
  • Chen, S. G., P. Parchi, P. Brown, S. Capellari, W. Zou, E. J. Cochran, C. L. Vnencak-Jones, J. Julien, C. Vital, J. Mikol, E. Lugaresi, L. Autilio-Gambetti, and P. Gambetti. 1997. Allelic origin of the abnormal prion protein isoform in familial prion diseases. Nat. Med. 3:1009–1015.
  • Chernoff, Y. O., S. L. Lindquist, B. Ono, S. G. Inge-Vechtomov, and S. W. Liebman. 1995. Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268:880–884.
  • Chernoff, Y. O., S. M. Uptain, and S. L. Lindquist. 2002. Analysis of prion factors in yeast. Methods Enzymol. 351:499–538.
  • Chiesa, R., B. Drisaldi, E. Quaglio, A. Migheli, P. Piccardo, B. Ghetti, and D. A. Harris. 2000. Accumulation of protease-resistant prion protein (PrP) and apoptosis of cerebellar granule cells in transgenic mice expressing a PrP insertional mutation. Proc. Natl. Acad. Sci. USA 97:5574–5579.
  • Chiesa, R., P. Piccardo, B. Ghetti, and D. A. Harris. 1998. Neurological illness in transgenic mice expressing a prion protein with an insertional mutation. Neuron 21:1339–1351.
  • Chiesa, R., P. Piccardo, E. Quaglio, B. Drisaldi, S. L. Si-Hoe, M. Takao, B. Ghetti, and D. A. Harris. 2003. Molecular distinction between pathogenic and infectious properties of the prion protein. J. Virol. 77:7611–7622.
  • Collinge, J. 2001. Prion diseases of humans and animals: their causes and molecular basis. Annu. Rev. Neurosci. 24:519–550.
  • Croes, E. A., J. Theuns, J. J. Houwing-Duistermaat, B. Dermaut, K. Sleegers, G. Roks, M. Van den Broeck, B. van Harten, J. C. van Swieten, M. Cruts, C. Van Broeckhoven, and C. M. van Duijn. 2004. Octapeptide repeat insertions in the prion protein gene and early onset dementia. J. Neurol. Neurosurg. Psychiatry 75:1166–1170.
  • DePace, A. H., A. Santoso, P. Hillner, and J. S. Weissman. 1998. A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93:1241–1252.
  • Derkatch, I. L., M. E. Bradley, J. Y. Hong, and S. W. Liebman. 2001. Prions affect the appearance of other prions: the story of [PIN+]. Cell 106:171–182.
  • Derkatch, I. L., M. E. Bradley, and S. W. Liebman. 1998. Overexpression of the SUP45 gene encoding a Sup35p-binding protein inhibits the induction of the de novo appearance of the [PSI+] prion. Proc. Natl. Acad. Sci. USA 95:2400–2405.
  • Derkatch, I. L., M. E. Bradley, S. V. Masse, S. P. Zadorsky, G. V. Polozkov, S. G. Inge-Vechtomov, and S. W. Liebman. 2000. Dependence and independence of [PSI+] and [PIN+]: a two-prion system in yeast? EMBO J. 19:1942–1952.
  • Derkatch, I. L., Y. O. Chernoff, V. V. Kushnirov, S. G. Inge-Vechtomov, and S. W. Liebman. 1996. Genesis and variability of [PSI] prion factors in Saccharomyces cerevisiae. Genetics 144:1375–1386.
  • Guthrie, C., and G. Fink. 2004. Guide to yeast genetics and molecular and cell biology, vol. 194. Elsevier Academic Press, San Diego, CA.
  • Hill, A. F., S. Joiner, J. A. Beck, T. A. Campbell, A. Dickinson, M. Poulter, J. D. Wadsworth, and J. Collinge. 2006. Distinct glycoform ratios of protease resistant prion protein associated with PRNP point mutations. Brain 129:676–685.
  • King, A., L. Doey, M. Rossor, S. Mead, J. Collinge, and P. Lantos. 2003. Phenotypic variability in the brains of a family with a prion disease characterized by a 144-base pair insertion in the prion protein gene. Neuropathol. Appl. Neurobiol. 29:98–105.
  • King, C. Y., and R. Diaz-Avalos. 2004. Protein-only transmission of three yeast prion strains. Nature 428:319–323.
  • Kochneva-Pervukhova, N. V., M. B. Chechenova, I. A. Valouev, V. V. Kushnirov, V. N. Smirnov, and M. D. Ter-Avanesyan. 2001. [Psi+] prion generation in yeast: characterization of the ‘strain’ difference. Yeast 18:489–497.
  • Kovács, G. G., G. Trabattoni, J. A. Hainfellner, J. W. Ironside, R. S. Knight, and H. Budka. 2002. Mutations of the prion protein gene phenotypic spectrum. J. Neurol. 249:1567–1582.
  • Krishnan, R., and S. L. Lindquist. 2005. Structural insights into a yeast prion illuminate nucleation and strain diversity. Nature 435:765–772.
  • Kryndushkin, D. S., I. M. Alexandrov, M. D. Ter-Avanesyan, and V. V. Kushnirov. 2003. Yeast [PSI+] prion aggregates are formed by small Sup35 polymers fragmented by Hsp104. J. Biol. Chem. 278:49636–49643.
  • Li, L., and S. Lindquist. 2000. Creating a protein-based element of inheritance. Science 287:661–664.
  • Liu, J. J., and S. Lindquist. 1999. Oligopeptide-repeat expansions modulate ‘protein-only’ inheritance in yeast. Nature 400:573–576.
  • Manogaran, A. L., K. T. Kirkland, and S. W. Liebman. 2006. An engineered nonsense URA3 allele provides a versatile system to detect the presence, absence and appearance of the [PSI+] prion in Saccharomyces cerevisiae. Yeast 23:141–147.
  • Millhauser, G. L. 2007. Copper and the prion protein: methods, structures, function, and disease. Annu. Rev. Phys. Chem. 58:299–320.
  • Moore, R. A., C. Herzog, J. Errett, D. A. Kocisko, K. M. Arnold, S. F. Hayes, and S. A. Priola. 2006. Octapeptide repeat insertions increase the rate of protease-resistant prion protein formation. Protein Sci. 15:609–619.
  • Mumberg, D., R. Muller, and M. Funk. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119–122.
  • Ness, F., P. Ferreira, B. S. Cox, and M. F. Tuite. 2002. Guanidine hydrochloride inhibits the generation of prion “seeds” but not prion protein aggregation in yeast. Mol. Cell. Biol. 22:5593–5605.
  • Osherovich, L. Z., and J. S. Weissman. 2001. Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI+] prion. Cell 106:183–194.
  • Parham, S. N., C. G. Resende, and M. F. Tuite. 2001. Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J. 20:2111–2119.
  • Patino, M. M., J. J. Liu, J. R. Glover, and S. Lindquist. 1996. Support for the prion hypothesis for inheritance of a phenotypic trait in yeast. Science 273:622–626.
  • Prusiner, S. B. 1998. Prions. Proc. Natl. Acad. Sci. USA 95:13363–13383.
  • Rogers, M., F. Yehiely, M. Scott, and S. B. Prusiner. 1993. Conversion of truncated and elongated prion proteins into the scrapie isoform in cultured cells. Proc. Natl. Acad. Sci. USA 90:3182–3186.
  • Scheibel, T., and S. L. Lindquist. 2001. The role of conformational flexibility in prion propagation and maintenance for Sup35p. Nat. Struct. Biol. 8:958–962.
  • Tanaka, M., P. Chien, N. Naber, R. Cooke, and J. S. Weissman. 2004. Conformational variations in an infectious protein determine prion strain differences. Nature 428:323–328.
  • Tanaka, M., P. Chien, K. Yonekura, and J. S. Weissman. 2005. Mechanism of cross-species prion transmission: an infectious conformation compatible with two highly divergent yeast prion proteins. Cell 121:49–62.
  • Tateishi, J., T. Kitamoto, M. Z. Hoque, and H. Furukawa. 1996. Experimental transmission of Creutzfeldt-Jakob disease and related diseases to rodents. Neurology 46:532–537.
  • Ter-Avanesyan, M. D., A. R. Dagkesamanskaya, V. V. Kushnirov, and V. N. Smirnov. 1994. The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137:671–676.
  • True, H. L. 2006. The battle of the fold: chaperones take on prions. Trends Genet. 22:110–117.
  • Tuite, M. F., and B. S. Cox. 2003. Propagation of yeast prions. Nat. Rev. Mol. Cell Biol. 4:878–890.
  • Uptain, S. M., and S. Lindquist. 2002. Prions as protein-based genetic elements. Annu. Rev. Microbiol. 56:703–741.
  • Uptain, S. M., G. J. Sawicki, B. Caughey, and S. Lindquist. 2001. Strains of [PSI+] are distinguished by their efficiencies of prion-mediated conformational conversion. EMBO J. 20:6236–6245.
  • Viles, J. H., D. Donne, G. Kroon, S. B. Prusiner, F. E. Cohen, H. J. Dyson, and P. E. Wright. 2001. Local structural plasticity of the prion protein. Analysis of NMR relaxation dynamics. Biochemistry 40:2743–2753.
  • Wadsworth, J. D., A. F. Hill, J. A. Beck, and J. Collinge. 2003. Molecular and clinical classification of human prion disease. Br. Med. Bull. 66:241–254.
  • Yin, S., S. Yu, C. Li, P. Wong, B. Chang, F. Xiao, S. C. Kang, H. Yan, G. Xiao, J. Grassi, P. Tien, and M. S. Sy. 2006. Prion proteins with insertion mutations have altered N-terminal conformation and increased ligand binding activity and are more susceptible to oxidative attack. J. Biol. Chem. 281:10698–10705.
  • Zhouravleva, G., V. V. Alenin, S. Inge-Vechtomov, and Y. O. Chernoff. 2002. To stick or not to stick: prion domains from yeast to mammals. Recent Res. Dev. Mol. Cell. Biol. 3:185–218.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.