42
Views
88
CrossRef citations to date
0
Altmetric
Article

MURC, a Muscle-Restricted Coiled-Coil Protein That Modulates the Rho/ROCK Pathway, Induces Cardiac Dysfunction and Conduction Disturbance

, , , , , , , , , & show all
Pages 3424-3436 | Received 11 Dec 2007, Accepted 04 Mar 2008, Published online: 27 Mar 2023

REFERENCES

  • Adam, O., G. Frost, F. Custodis, M. A. Sussman, H. J. Schafers, M. Bohm, and U. Laufs. 2007. Role of Rac1 GTPase activation in atrial fibrillation. J. Am. Coll. Cardiol. 50:359–367.
  • Amano, M., Y. Fukata, and K. Kaibuchi. 2000. Regulation and functions of Rho-associated kinase. Exp. Cell. Res. 261:44–51.
  • Aoki, H., S. Izumo, and J. Sadoshima. 1998. Angiotensin II activates RhoA in cardiac myocytes: a critical role of RhoA in angiotensin II-induced premyofibril formation. Circ. Res. 82:666–676.
  • Arai, A., J. A. Spencer, and E. N. Olson. 2002. STARS, a striated muscle activator of Rho signaling and serum response factor-dependent transcription. J. Biol. Chem. 277:24453–24459.
  • Burgener, R., M. Wolf, T. Ganz, and M. Baggiolini. 1990. Purification and characterization of a major phosphatidylserine-binding phosphoprotein from human platelets. Biochem. J. 269:729–734.
  • Chihara, K., M. Amano, N. Nakamura, T. Yano, M. Shibata, T. Tokui, H. Ichikawa, R. Ikebe, M. Ikebe, and K. Kaibuchi. 1997. Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rho-kinase. J. Biol. Chem. 272:25121–25127.
  • Churchill, E., G. Budas, A. Vallentin, T. Koyanagi, and D. Mochly-Rosen. 2008. PKC isozymes in chronic cardiac disease: possible therapeutic targets? Annu. Rev. Pharmacol. Toxicol. 48:569–599.
  • Clark, K. A., A. S. McElhinny, M. C. Beckerle, and C. C. Gregorio. 2002. Striated muscle cytoarchitecture: an intricate web of form and function. Annu. Rev. Cell Dev. Biol. 18:637–706.
  • Epstein, N. D., and J. S. Davis. 2003. Sensing stretch is fundamental. Cell 112:147–150.
  • Etienne-Manneville, S., and A. Hall. 2002. Rho GTPases in cell biology. Nature 420:629–635.
  • Everett, T. H. T., and J. E. Olgin. 2007. Atrial fibrosis and the mechanisms of atrial fibrillation. Heart Rhythm 4:S24–S27.
  • Fukata, M., M. Nakagawa, and K. Kaibuchi. 2003. Roles of Rho-family GTPases in cell polarisation and directional migration. Curr. Opin. Cell Biol. 15:590–597.
  • Fuster, V., L. E. Ryden, D. S. Cannom, H. J. Crijns, A. B. Curtis, K. A. Ellenbogen, J. L. Halperin, J. Y. Le Heuzey, G. N. Kay, J. E. Lowe, S. B. Olsson, E. N. Prystowsky, J. L. Tamargo, S. Wann, S. C. Smith, Jr., A. K. Jacobs, C. D. Adams, J. L. Anderson, E. M. Antman, S. A. Hunt, R. Nishimura, J. P. Ornato, R. L. Page, B. Riegel, S. G. Priori, J. J. Blanc, A. Budaj, A. J. Camm, V. Dean, J. W. Deckers, C. Despres, K. Dickstein, J. Lekakis, K. McGregor, M. Metra, J. Morais, A. Osterspey, and J. L. Zamorano. 2006. ACC/AHA/ESC 2006 guidelines for the management of patients with atrial fibrillation, executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines and the European Society of Cardiology Committee for Practice Guidelines (Writing Committee to Revise the 2001 Guidelines for the Management of Patients with Atrial Fibrillation). J. Am. Coll. Cardiol. 48:854–906.
  • Geneste, O., J. W. Copeland, and R. Treisman. 2002. LIM kinase and Diaphanous cooperate to regulate serum response factor and actin dynamics. J. Cell Biol. 157:831–838.
  • Gratton, J. P., P. Bernatchez, and W. C. Sessa. 2004. Caveolae and caveolins in the cardiovascular system. Circ. Res. 94:1408–1417.
  • Gulick, J., A. Subramaniam, J. Neumann, and J. Robbins. 1991. Isolation and characterization of the mouse cardiac myosin heavy chain genes. J. Biol. Chem. 266:9180–9185.
  • Gustincich, S., and C. Schneider. 1993. Serum deprivation response gene is induced by serum starvation but not by contact inhibition. Cell Growth Differ. 4:753–760.
  • Gustincich, S., P. Vatta, S. Goruppi, M. Wolf, S. Saccone, G. Della Valle, M. Baggiolini, and C. Schneider. 1999. The human serum deprivation response gene (SDPR) maps to 2q32-q33 and codes for a phosphatidylserine-binding protein. Genomics 57:120–129.
  • Hagendorff, A., B. Schumacher, S. Kirchhoff, B. Luderitz, and K. Willecke. 1999. Conduction disturbances and increased atrial vulnerability in Connexin40-deficient mice analyzed by transesophageal stimulation. Circulation 99:1508–1515.
  • Hill, C. S., J. Wynne, and R. Treisman. 1995. The Rho family GTPases RhoA, Rac1, and CDC42Hs regulate transcriptional activation by SRF. Cell 81:1159–1170.
  • Hines, W. A., J. Thorburn, and A. Thorburn. 1999. A low-affinity serum response element allows other transcription factors to activate inducible gene expression in cardiac myocytes. Mol. Cell. Biol. 19:1841–1852.
  • Hoshijima, M. 2006. Mechanical stress-strain sensors embedded in cardiac cytoskeleton: Z disk, titin, and associated structures. Am. J. Physiol. Heart Circ. Physiol. 290:H1313–H1325.
  • Hoshijima, M., V. P. Sah, Y. Wang, K. R. Chien, and J. H. Brown. 1998. The low molecular weight GTPase Rho regulates myofibril formation and organization in neonatal rat ventricular myocytes. Involvement of Rho kinase. J. Biol. Chem. 273:7725–7730.
  • Houweling, A. C., M. M. van Borren, A. F. Moorman, and V. M. Christoffels. 2005. Expression and regulation of the atrial natriuretic factor encoding gene Nppa during development and disease. Cardiovasc. Res. 67:583–593.
  • Kasahara, H., T. Ueyama, H. Wakimoto, M. K. Liu, C. T. Maguire, K. L. Converso, P. M. Kang, W. J. Manning, J. Lawitts, D. L. Paul, C. I. Berul, and S. Izumo. 2003. Nkx2.5 homeoprotein regulates expression of gap junction protein connexin 43 and sarcomere organization in postnatal cardiomyocytes. J. Mol. Cell. Cardiol. 35:243–256.
  • Kasahara, H., H. Wakimoto, M. Liu, C. T. Maguire, K. L. Converso, T. Shioi, W. Y. Huang, W. J. Manning, D. Paul, J. Lawitts, C. I. Berul, and S. Izumo. 2001. Progressive atrioventricular conduction defects and heart failure in mice expressing a mutant Csx/Nkx2.5 homeoprotein. J. Clin. Investig. 108:189–201.
  • Kawamura, S., S. Miyamoto, and J. H. Brown. 2003. Initiation and transduction of stretch-induced RhoA and Rac1 activation through caveolae: cytoskeletal regulation of ERK translocation. J. Biol. Chem. 278:31111–31117.
  • Kuwahara, K., G. C. Teg Pipes, J. McAnally, J. A. Richardson, J. A. Hill, R. Bassel-Duby, and E. N. Olson. 2007. Modulation of adverse cardiac remodeling by STARS, a mediator of MEF2 signaling and SRF activity. J. Clin. Investig. 117:1324–1334.
  • McMullen, J. R., T. Shioi, L. Zhang, O. Tarnavski, M. C. Sherwood, P. M. Kang, and S. Izumo. 2003. Phosphoinositide 3-kinase(p110α) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc. Natl. Acad. Sci. USA 100:12355–12360.
  • Mineo, C., Y. S. Ying, C. Chapline, S. Jaken, and R. G. Anderson. 1998. Targeting of protein kinase Cα to caveolae. J. Cell Biol. 141:601–610.
  • Muslin, A. J. 2005. Role of Raf proteins in cardiac hypertrophy and cardiomyocyte survival. Trends Cardiovasc. Med. 15:225–229.
  • Narumiya, S., and S. Yasuda. 2006. Rho GTPases in animal cell mitosis. Curr. Opin. Cell Biol. 18:199–205.
  • Ogata, T., T. Ueyama, T. Nomura, S. Asada, M. Tagawa, T. Nakamura, T. Takahashi, H. Matsubara, and H. Oh. 2007. Osteopontin is a myosphere-derived secretory molecule that promotes angiogenic progenitor cell proliferation through the phosphoinositide 3-kinase/Akt pathway. Biochem. Biophys. Res. Commun. 359:341–347.
  • Parlakian, A., C. Charvet, B. Escoubet, M. Mericskay, J. D. Molkentin, G. Gary-Bobo, L. J. De Windt, M. A. Ludosky, D. Paulin, D. Daegelen, D. Tuil, and Z. Li. 2005. Temporally controlled onset of dilated cardiomyopathy through disruption of the SRF gene in adult heart. Circulation 112:2930–2939.
  • Pyle, W. G., and R. J. Solaro. 2004. At the crossroads of myocardial signaling: the role of Z-discs in intracellular signaling and cardiac function. Circ. Res. 94:296–305.
  • Saba, S., A. M. Janczewski, L. C. Baker, V. Shusterman, E. C. Gursoy, A. M. Feldman, G. Salama, C. F. McTiernan, and B. London. 2005. Atrial contractile dysfunction, fibrosis, and arrhythmias in a mouse model of cardiomyopathy secondary to cardiac-specific overexpression of tumor necrosis factor-α. Am. J. Physiol. Heart Circ. Physiol. 289:H1456–H1467.
  • Sah, V. P., S. Minamisawa, S. P. Tam, T. H. Wu, G. W. Dorn, 2nd, J. Ross, Jr., K. R. Chien, and J. H. Brown. 1999. Cardiac-specific overexpression of RhoA results in sinus and atrioventricular nodal dysfunction and contractile failure. J. Clin. Investig. 103:1627–1634.
  • Sawaya, S. E., Y. S. Rajawat, T. G. Rami, G. Szalai, R. L. Price, N. Sivasubramanian, D. L. Mann, and D. S. Khoury. 2007. Downregulation of connexin 40 and increased prevalence of atrial arrhythmias in transgenic mice with cardiac-restricted overexpression of tumor necrosis factor. Am. J. Physiol. Heart Circ. Physiol. 292:H1561–H1567.
  • Shioi, T., P. M. Kang, P. S. Douglas, J. Hampe, C. M. Yballe, J. Lawitts, L. C. Cantley, and S. Izumo. 2000. The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J. 19:2537–2548.
  • Stace, C. L., and N. T. Ktistakis. 2006. Phosphatidic acid- and phosphatidylserine-binding proteins. Biochim. Biophys. Acta 1761:913–926.
  • Ueyama, T., H. Kasahara, T. Ishiwata, Q. Nie, and S. Izumo. 2003. Myocardin expression is regulated by Nkx2.5, and its function is required for cardiomyogenesis. Mol. Cell. Biol. 23:9222–9232.
  • Ueyama, T., H. Kasahara, T. Ishiwata, N. Yamasaki, and S. Izumo. 2003. Csm, a cardiac-specific isoform of the RNA helicase Mov10l1, is regulated by Nkx2.5 in embryonic heart. J. Biol. Chem. 278:28750–28757.
  • Ueyama, T., S. Kawashima, T. Sakoda, Y. Rikitake, T. Ishida, M. Kawai, T. Yamashita, S. Ishido, H. Hotta, and M. Yokoyama. 2000. Requirement of activation of the extracellular signal-regulated kinase cascade in myocardial cell hypertrophy. J. Mol. Cell. Cardiol. 32:947–960.
  • Ueyama, T., T. Sakoda, S. Kawashima, E. Hiraoka, K. Hirata, H. Akita, and M. Yokoyama. 1997. Activated RhoA stimulates c-fos gene expression in myocardial cells. Circ. Res. 81:672–678.
  • Velculescu, V. E., B. Vogelstein, and K. W. Kinzler. 2000. Analysing uncharted transcriptomes with SAGE. Trends Genet. 16:423–425.
  • Verheule, S., T. Sato, T. t. Everett, S. K. Engle, D. Otten, M. Rubart-von der Lohe, H. O. Nakajima, H. Nakajima, L. J. Field, and J. E. Olgin. 2004. Increased vulnerability to atrial fibrillation in transgenic mice with selective atrial fibrosis caused by overexpression of TGF-β1. Circ. Res. 94:1458–1465.
  • Wei, L., G. E. Taffet, D. S. Khoury, J. Bo, Y. Li, A. Yatani, M. C. Delaughter, R. Klevitsky, T. E. Hewett, J. Robbins, L. H. Michael, M. D. Schneider, M. L. Entman, and R. J. Schwartz. 2004. Disruption of Rho signaling results in progressive atrioventricular conduction defects while ventricular function remains preserved. FASEB J. 18:857–859.
  • Xiao, H. D., S. Fuchs, D. J. Campbell, W. Lewis, S. C. Dudley, Jr., V. S. Kasi, B. D. Hoit, G. Keshelava, H. Zhao, M. R. Capecchi, and K. E. Bernstein. 2004. Mice with cardiac-restricted angiotensin-converting enzyme (ACE) have atrial enlargement, cardiac arrhythmia, and sudden death. Am. J. Pathol. 165:1019–1032.
  • Zhang, X., G. Azhar, J. Chai, P. Sheridan, K. Nagano, T. Brown, J. Yang, K. Khrapko, A. M. Borras, J. Lawitts, R. P. Misra, and J. Y. Wei. 2001. Cardiomyopathy in transgenic mice with cardiac-specific overexpression of serum response factor. Am. J. Physiol. Heart Circ. Physiol. 280:H1782–H1792.
  • Zhang, X., J. Chai, G. Azhar, P. Sheridan, A. M. Borras, M. C. Furr, K. Khrapko, J. Lawitts, R. P. Misra, and J. Y. Wei. 2001. Early postnatal cardiac changes and premature death in transgenic mice overexpressing a mutant form of serum response factor. J. Biol. Chem. 276:40033–40040.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.