74
Views
114
CrossRef citations to date
0
Altmetric
Article

Hypoxia Leads to Na,K-ATPase Downregulation via Ca2+ Release-Activated Ca2+ Channels and AMPK Activation

, , , , , , , , & show all
Pages 3546-3556 | Received 25 Jan 2011, Accepted 13 Jun 2011, Published online: 20 Mar 2023

REFERENCES

  • Aley, P. K., H. J. Murray, J. P. Boyle, H. A. Pearson, and C. Peers. 2006. Hypoxia stimulates Ca2+ release from intracellular stores in astrocytes via cyclic ADP ribose-mediated activation of ryanodine receptors. Cell Calcium 39:95–100.
  • Aussel, C., R. Marhaba, C. Pelassy, and J. P. Breittmayer. 1996. Submicromolar La3+ concentrations block the calcium release-activated channel, and impair CD69 and CD25 expression in CD3- or thapsigargin-activated Jurkat cells. Biochem. J. 313:909–913.
  • Bell, E. L., T. A. Klimova, J. Eisenbart, P. T. Schumacker, and N. S. Chandel. 2007. Mitochondrial reactive oxygen species trigger hypoxia-inducible factor-dependent extension of the replicative life span during hypoxia. Mol. Cell. Biol. 27:5737–5745.
  • Bertorello, A. M. et al. 2003. Analysis of Na+,K+-ATPase motion and incorporation into the plasma membrane in response to G protein-coupled receptor signals in living cells. Mol. Biol. Cell 14:1149–1157.
  • Briva, A., I. Vadasz, E. Lecuona, L. C. Welch, J. Chen, L. A. Dada, H. E. Trejo, V. Dumasius, Z. S. Azzam, P. M. Myrianthefs, D. Batlle, Y. Gruenbaum, and J. I. Sznajder. 2007. High CO2 levels impair alveolar epithelial function independently of pH. PLoS One 2:e1238.
  • Brunelle, J. K. et al. 2005. Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation. Cell Metab. 1:409–414.
  • Budinger, G. R. et al. 1996. Cellular energy utilization and supply during hypoxia in embryonic cardiac myocytes. Am. J. Physiol. Lung Cell. Mol. Physiol. 270:L44–L53.
  • Cahalan, M. D. 2009. STIMulating store-operated Ca(2+) entry. Nat. Cell Biol. 11:669–677.
  • Carling, D., M. J. Sanders, and A. Woods. 2008. The regulation of AMP-activated protein kinase by upstream kinases. Int. J. Obes. 32(Suppl. 4):S55–S59.
  • Chandel, N. S. et al. 1998. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc. Natl. Acad. Sci. U. S. A. 95:11715–11720.
  • Comellas, A. P. et al. 2006. Hypoxia-mediated degradation of Na,K-ATPase via mitochondrial reactive oxygen species and the ubiquitin-conjugating system. Circ. Res. 98:1314–1322.
  • Dada, L. A. et al. 2003. Hypoxia-induced endocytosis of Na,K-ATPase in alveolar epithelial cells is mediated by mitochondrial reactive oxygen species and PKC-zeta. J. Clin. Invest. 111:1057–1064.
  • Emerling, B. M. et al. 2009. Hypoxic activation of AMPK is dependent on mitochondrial ROS but independent of an increase in AMP/ATP ratio. Free Radic. Biol. Med. 46:1386–1391.
  • Fukuda, N. et al. 2001. Mechanisms of TNF-alpha stimulation of amiloride-sensitive sodium transport across alveolar epithelium. Am. J. Physiol. Lung Cell. Mol. Physiol. 280:L1258–L1265.
  • Gusarova, G. A. et al. 2009. Alpha1-AMP-activated protein kinase regulates hypoxia-induced Na,K-ATPase endocytosis via direct phosphorylation of protein kinase C zeta. Mol. Cell. Biol. 29:3455–3464.
  • Guzy, R. D. et al. 2005. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab. 1:401–408.
  • Hawley, S. A. et al. 2003. Complexes between the LKB1 tumor suppressor, STRAD alpha/beta and MO25 alpha/beta are upstream kinases in the AMP-activated protein kinase cascade. J. Biol. 2:28.
  • Hawley, S. A. et al. 1996. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J. Biol. Chem. 271:27879–27887.
  • Hawley, S. A. et al. 2005. Calmodulin-dependent protein kinase kinase-beta is an alternative upstream kinase for AMP-activated protein kinase. Cell Metab. 2:9–19.
  • Huang, G. N. et al. 2006. STIM1 carboxyl-terminus activates native SOC, I(crac) and TRPC1 channels. Nat. Cell Biol. 8:1003–1010.
  • Hurley, R. L. et al. 2005. The Ca2+/calmodulin-dependent protein kinase kinases are AMP-activated protein kinase kinases. J. Biol. Chem. 280:29060–29066.
  • King, M. P., and G. Attardi. 1996. Isolation of human cell lines lacking mitochondrial DNA. Methods Enzymol. 264:304–313.
  • Klimova, T. A. et al. 2009. Hyperoxia-induced premature senescence requires p53 and pRb, but not mitochondrial matrix ROS. FASEB J. 23:783–794.
  • Lecuona, E. et al. 2006. Na,K-ATPase alpha1-subunit dephosphorylation by protein phosphatase 2A is necessary for its recruitment to the plasma membrane. FASEB J. 20:2618–2620.
  • Lewis, R. S. 2007. The molecular choreography of a store-operated calcium channel. Nature 446:284–287.
  • Li, T., and H. G. Folkesson. 2006. RNA interference for alpha-ENaC inhibits rat lung fluid absorption in vivo. Am. J. Physiol. Lung Cell. Mol. Physiol. 290:L649–L660.
  • Lieber, M., B. Smith, A. Szakal, W. Nelson-Rees, and G. Todaro. 1976. A continuous tumor-cell line from a human lung carcinoma with properties of type II alveolar epithelial cells. Int. J. Cancer 17:62–70.
  • Litvan, J. et al. 2006. Beta-adrenergic receptor stimulation and adenoviral overexpression of superoxide dismutase prevent the hypoxia-mediated decrease in Na,K-ATPase and alveolar fluid reabsorption. J. Biol. Chem. 281:19892–19898.
  • Luik, R. M., M. M. Wu, J. Buchanan, and R. S. Lewis. 2006. The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J. Cell Biol. 174:815–825.
  • Mairbaurl, H., R. Wodopia, S. Eckes, S. Schulz, and P. Bartsch. 1997. Impairment of cation transport in A549 cells and rat alveolar epithelial cells by hypoxia. Am. J. Physiol. 273:L797–L806.
  • Mansfield, K. D. et al. 2005. Mitochondrial dysfunction resulting from loss of cytochrome c impairs cellular oxygen sensing and hypoxic HIF-alpha activation. Cell Metab. 1:393–399.
  • Martinelli, R. et al. 2009. ICAM-1-mediated endothelial nitric oxide synthase activation via calcium and AMP-activated protein kinase is required for transendothelial lymphocyte migration. Mol. Biol. Cell 20:995–1005.
  • Merlin, J. et al. 2010. The M3-muscarinic acetylcholine receptor stimulates glucose uptake in L6 skeletal muscle cells by a CaMKK-AMPK-dependent mechanism. Cell Signal. 22:1104–1113.
  • Milligan, L. P., and B. W. McBride. 1985. Energy costs of ion pumping by animal tissues. J. Nutr. 115:1374–1382.
  • Muik, M. et al. 2008. Dynamic coupling of the putative coiled-coil domain of ORAI1 with STIM1 mediates ORAI1 channel activation. J. Biol. Chem. 283:8014–8022.
  • Mutlu, G. M., and J. I. Sznajder. 2005. Mechanisms of pulmonary edema clearance. Am. J. Physiol. Lung Cell. Mol. Physiol. 289:L685–L695.
  • Navarro-Borelly, L. et al. 2008. STIM1-Orai1 interactions and Orai1 conformational changes revealed by live-cell FRET microscopy. J. Physiol. 586:5383–5401.
  • Parekh, A. B., and J. W. Putney, Jr. 2005. Store-operated calcium channels. Physiol. Rev. 85:757–810.
  • Prakriya, M. 2009. The molecular physiology of CRAC channels. Immunol. Rev. 231:88–98.
  • Ridge, K. M. et al. 2003. Alveolar type 1 cells express the alpha2 Na,K-ATPase, which contributes to lung liquid clearance. Circ. Res. 92:453–460.
  • Sakamoto, K. et al. 2006. Deficiency of LKB1 in heart prevents ischemia-mediated activation of AMPKalpha2 but not AMPKalpha1. Am. J. Physiol. Endocrinol. Metab. 290:E780–E788.
  • Saldias, F. J., Z. S. Azzam, K. M. Ridge, A. Yeldandi, D. H. Rutschman, D. Schraufnagel, and J. I. Sznajder. 2001. Alveolar fluid reabsorption is impaired by increased left atrial pressures in rats. Am. J. Physiol. Lung Cell Mol. Physiol. 281:L591–L597.
  • Salt, I. et al. 1998. AMP-activated protein kinase: greater AMP dependence, and preferential nuclear localization, of complexes containing the alpha2 isoform. Biochem. J. 334:177–187.
  • Sarbassov, D. D., D. A. Guertin, S. M. Ali, and D. M. Sabatini. 2005. Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex. Science 307:1098–1101.
  • Sartori, C. et al. 2002. Salmeterol for the prevention of high-altitude pulmonary edema. N. Engl. J. Med. 346:1631–1636.
  • Schroedl, C., D. S. McClintock, G. R. Budinger, and N. S. Chandel. 2002. Hypoxic but not anoxic stabilization of HIF-1alpha requires mitochondrial reactive oxygen species. Am. J. Physiol. Lung Cell. Mol. Physiol. 283:L922–L931.
  • Stahmann, N., A. Woods, D. Carling, and R. Heller. 2006. Thrombin activates AMP-activated protein kinase in endothelial cells via a pathway involving Ca2+/calmodulin-dependent protein kinase kinase beta. Mol. Cell. Biol. 26:5933–5945.
  • Sznajder, J. I., and L. D. Wood. 1991. Beneficial effects of reducing pulmonary edema in patients with acute hypoxemic respiratory failure. Chest 100:890–892.
  • Tamas, P. et al. 2006. Regulation of the energy sensor AMP-activated protein kinase by antigen receptor and Ca2+ in T lymphocytes. J. Exp. Med. 203:1665–1670.
  • Trejo, H. E. et al. 2010. Role of kinesin light chain-2 of kinesin-1 in the traffic of Na,K-ATPase-containing vesicles in alveolar epithelial cells. FASEB J. 24:374–382.
  • Turrens, J. F. 2003. Mitochondrial formation of reactive oxygen species. J. Physiol. 552:335–344.
  • Tzatsos, A., and P. N. Tsichlis. 2007. Energy depletion inhibits phosphatidylinositol 3-kinase/Akt signaling and induces apoptosis via AMP-activated protein kinase-dependent phosphorylation of IRS-1 at Ser-794. J. Biol. Chem. 282:18069–18082.
  • Vadasz, I. et al. 2008. AMP-activated protein kinase regulates CO2-induced alveolar epithelial dysfunction in rats and human cells by promoting Na,K-ATPase endocytosis. J. Clin. Invest. 118:752–762.
  • Vivona, M. L., M. Matthay, M. B. Chabaud, G. Friedlander, and C. Clerici. 2001. Hypoxia reduces alveolar epithelial sodium and fluid transport in rats: reversal by beta-adrenergic agonist treatment. Am. J. Respir. Cell Mol. Biol. 25:554–561.
  • Ware, L. B., and M. A. Matthay. 2005. Clinical practice. Acute pulmonary edema. N. Engl. J. Med. 353:2788–2796.
  • Woods, A. et al. 2005. Ca2+/calmodulin-dependent protein kinase kinase-beta acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metab. 2:21–33.
  • Woods, A. et al. 2003. LKB1 is the upstream kinase in the AMP-activated protein kinase cascade. Curr. Biol. 13:2004–2008.
  • Wu, M. M., J. Buchanan, R. M. Luik, and R. S. Lewis. 2006. Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane. J. Cell Biol. 174:803–813.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.