52
Views
34
CrossRef citations to date
0
Altmetric
Article

The Midblastula Transition Defines the Onset of Y RNA-Dependent DNA Replication in Xenopus laevis

, , &
Pages 3857-3870 | Received 28 Mar 2011, Accepted 10 Jul 2011, Published online: 20 Mar 2023

REFERENCES

  • Aladjem, M. I.. 2007. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat. Rev. Genet. 8:588–600.
  • Amaral, P. P., and J. S. Mattick. 2008. Noncoding RNA in development. Mamm. Genome 19:454–492.
  • Arias, E. E., and J. C. Walter. 2004. Initiation of DNA replication in xenopus egg extracts. Front. Biosci. 9:3029–3045.
  • Arias, E. E., and J. C. Walter. 2007. Strength in numbers: preventing rereplication via multiple mechanisms in eukaryotic cells. Genes Dev. 21:497–518.
  • Blow, J. J., S. M. Dilworth, C. Dingwall, A. D. Mills, and R. A. Laskey. 1987. Chromosome replication in cell-free systems from Xenopus eggs. Philos. Trans. R. Soc. Lond. B Biol. Sci. 317:483–494.
  • Blow, J. J., and R. A. Laskey. 1986. Initiation of DNA replication in nuclei and purified DNA by a cell-free extract of Xenopus eggs. Cell 47:577–587.
  • Brown, D. D., and E. Littna. 1964. RNA synthesis during the development of Xenopus laevis, the South African clawed toad. J. Mol. Biol. 8:669–687.
  • Carthew, R. W., and E. J. Sontheimer. 2009. Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655.
  • Chen, X., and S. L. Wolin. 2004. The Ro 60 kDa autoantigen: insights into cellular function and role in autoimmunity. J. Mol. Med. 82:232–239.
  • Christov, C. P., T. J. Gardiner, D. Szüts, and T. Krude. 2006. Functional requirement of noncoding Y RNAs for human chromosomal DNA replication. Mol. Cell. Biol. 26:6993–7004.
  • Christov, C. P., E. Trivier, and T. Krude. 2008. Noncoding human Y RNAs are overexpressed in tumours and required for cell proliferation. Br. J. Cancer 98:981–988.
  • Donti, T. R., S. Datta, P. Y. Sandoval, and G. M. Kapler. 2009. Differential targeting of Tetrahymena ORC to ribosomal DNA and non-rDNA replication origins. EMBO J. 28:223–233.
  • Eisen, J. S., and J. C. Smith. 2008. Controlling morpholino experiments: don't stop making antisense. Development 135:1735–1743.
  • Ellison, T. R., P. M. Mathisen, and L. Miller. 1985. Developmental changes in keratin patterns during epidermal maturation. Dev. Biol. 112:329–337.
  • Farris, A. D., C. A. O'Brien, and J. B. Harley. 1995. Y3 is the most conserved small RNA component of Ro ribonucleoprotein complexes in vertebrate species. Gene 154:193–198.
  • Fuchs, G., A. J. Stein, C. Fu, K. M. Reinisch, and S. L. Wolin. 2006. Structural and biochemical basis for misfolded RNA recognition by the Ro autoantigen. Nat. Struct. Mol. Biol. 13:1002–1009.
  • Gardiner, T. J., C. P. Christov, A. R. Langley, and T. Krude. 2009. A conserved motif of vertebrate Y RNAs essential for chromosomal DNA replication. RNA 15:1375–1385.
  • Gilbert, D. M., H. Miyazawa, and M. L. DePamphilis. 1995. Site-specific initiation of DNA replication in Xenopus egg extract requires nuclear structure. Mol. Cell. Biol. 15:2942–2954.
  • Harland, R. M., and R. A. Laskey. 1980. Regulated replication of DNA microinjected into eggs of Xenopus laevis. Cell 21:761–771.
  • Hogg, J. R., and K. Collins. 2008. Structured non-coding RNAs and the RNP renaissance. Curr. Opin. Chem. Biol. 12:684–689.
  • Hyrien, O., C. Maric, and M. Mechali. 1995. Transition in specification of embryonic metazoan DNA replication origins. Science 270:994–997.
  • Hyrien, O., and M. Mechali. 1993. Chromosomal replication initiates and terminates at random sequences but at regular intervals in the ribosomal DNA of Xenopus early embryos. EMBO J. 12:4511–4520.
  • Keller, C., O. Hyrien, R. Knippers, and T. Krude. 2002. Site-specific and temporally controlled initiation of DNA replication in a human cell-free system. Nucleic Acids Res. 30:2114–2123.
  • Krieg, P. A., and D. A. Melton. 1985. Developmental regulation of a gastrula-specific gene injected into fertilized Xenopus eggs. EMBO J. 4:3463–3471.
  • Krude, T.. 2006. Initiation of chromosomal DNA replication in mammalian cell-free systems. Cell Cycle 5:2115–2122.
  • Krude, T.. 2000. Initiation of human DNA replication in vitro using nuclei from cells arrested at an initiation-competent state. J. Biol. Chem. 275:13699–13707.
  • Krude, T.. 2010. Non-coding RNAs: new players in the field of eukaryotic DNA replication. Subcell. Biochem. 50:105–118.
  • Krude, T., C. P. Christov, O. Hyrien, and K. Marheineke. 2009. Y RNA functions at the initiation step of mammalian chromosomal DNA replication. J. Cell Sci. 122:2836–2845.
  • Langley, A. R., H. Chambers, C. P. Christov, and T. Krude. 2010. Ribonucleoprotein particles containing non-coding Y RNAs, Ro60, La and nucleolin are not required for Y RNA function in DNA replication. PLoS One 5:e13673.
  • Laskey, R. A., R. M. Harland, W. C. Earnshaw, and C. Dingwall. 1981. Chromatin assembly and the co-ordination of DNA replication in the eukaryotic chromosome, p. 162–167. In Schweiger, H. G. (ed.), International Cell Biology 1980–1981. Springer Verlag, Berlin, Germany.
  • Lemaitre, J. M., G. Geraud, and M. Mechali. 1998. Dynamics of the genome during early Xenopus laevis development: karyomeres as independent units of replication. J. Cell Biol. 142:1159–1166.
  • Leno, G. H., C. S. Downes, and R. A. Laskey. 1992. The nuclear membrane prevents replication of human G2 nuclei but not G1 nuclei in Xenopus egg extract. Cell 69:151–158.
  • Marheineke, K., A. Goldar, T. Krude, and O. Hyrien. 2009. Use of DNA combing to study DNA replication in xenopus and human cell-free systems. Methods Mol. Biol. 521:575–603.
  • Mathews, D. H., J. Sabina, M. Zuker, and D. H. Turner. 1999. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J. Mol. Biol. 288:911–940.
  • Mechali, M.. 2010. Eukaryotic DNA replication origins: many choices for appropriate answers. Nat. Rev. Mol. Cell Biol. 11:728–738.
  • Mechali, M., and S. Kearsey. 1984. Lack of specific sequence requirement for DNA replication in Xenopus eggs compared with high sequence specificity in yeast. Cell 38:55–64.
  • Minshull, J., J. J. Blow, and T. Hunt. 1989. Translation of cyclin mRNA is necessary for extracts of activated xenopus eggs to enter mitosis. Cell 56:947–956.
  • Mohammad, M. M., T. R. Donti, J. Sebastian Yakisich, A. G. Smith, and G. M. Kapler. 2007. Tetrahymena ORC contains a rRNA fragment that participates in rDNA origin recognition. EMBO J. 26:5048–5060.
  • Montag, M., H. Spring, and M. F. Trendelenburg. 1988. Structural analysis of the mitotic cycle in pre-gastrula Xenopus embryos. Chromosoma 96:187–196.
  • Mosig, A., M. Guofeng, B. M. R. Stadler, and P. F. Stadler. 2007. Evolution of the vertebrate Y RNA cluster. Theor. Biosci. 129:9–14.
  • Murray, A. W.. 1991. Cell cycle extracts. Methods Cell Biol. 36:581–605.
  • Nagai, T., et al. 2002. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20:87–90.
  • Newport, J., and M. Kirschner. 1982. A major developmental transition in early Xenopus embryos. I. Characterization and timing of cellular changes at the midblastula stage. Cell 30:675–686.
  • Newport, J., and M. Kirschner. 1982. A major developmental transition in early Xenopus embryos. II. Control of the onset of transcription. Cell 30:687–696.
  • Nieuwkoop, P. D., and J. Faber. 1975. Normal table of Xenopus laevis (Daudin): a systematical and chronological survey of the development from the fertilized egg till the end of metamorphosis, 2nd ed. North-Holland Publishing Co., Amsterdam, Netherlands.
  • Norseen, J., F. B. Johnson, and P. M. Lieberman. 2009. Role for G-quadruplex RNA binding by Epstein-Barr virus nuclear antigen 1 in DNA replication and metaphase chromosome attachment. J. Virol. 83:10336–10346.
  • Norseen, J., et al. 2008. RNA-dependent recruitment of the origin recognition complex. EMBO J. 27:3024–3035.
  • O'Brien, C. A., and S. L. Wolin. 1994. A possible role for the 60-kD Ro autoantigen in a discard pathway for defective 5S rRNA precursors. Genes Dev. 8:2891–2903.
  • Perreault, J., J. P. Perreault, and G. Boire. 2007. The Ro associated Y RNAs in metazoans: evolution and diversification. Mol. Biol. Evol. 24:1678–1689.
  • Ponting, C. P., P. L. Oliver, and W. Reik. 2009. Evolution and functions of long noncoding RNAs. Cell 136:629–641.
  • Pruijn, G. J., P. A. Wingens, S. L. Peters, J. P. Thijssen, and W. J. van Venrooij. 1993. Ro RNP associated Y RNAs are highly conserved among mammals. Biochim. Biophys. Acta 1216:395–401.
  • Rollins, M. B., and M. T. Andrews. 1991. Morphogenesis and regulated gene activity are independent of DNA replication in Xenopus embryos. Development 112:559–569.
  • Signoret, J., and J. Lefresne. 1971. Contribution a l'etude de la segmentation de l'oef d'axolotl. I. Definition de la transition blastuleenne. Ann. Embryol. Morphogen. 4:113–123. (In French.)
  • Slack, J. M.. 1984. Regional biosynthetic markers in the early amphibian embryo. J. Embryol. Exp. Morphol. 80:289–319.
  • Stein, A. J., G. Fuchs, C. Fu, S. L. Wolin, and K. M. Reinisch. 2005. Structural insights into RNA quality control: the Ro autoantigen binds misfolded RNAs via its central cavity. Cell 121:529–539.
  • Szüts, D., C. Christov, L. Kitching, and T. Krude. 2005. Distinct populations of human PCNA are required for initiation of chromosomal DNA replication and concurrent DNA repair. Exp. Cell Res. 311:240–250.
  • Szüts, D., et al. 2003. RPA is an initiation factor for human chromosomal DNA replication. Nucleic Acids Res. 31:1725–1734.
  • Takeda, D. Y., and A. Dutta. 2005. DNA replication and progression through S phase. Oncogene 24:2827–2843.
  • Westerfield, M.. 1993. The zebrafish book: a guide for the laboratory use of zebrafish (Brachydanio rerio). University of Oregon Press, Eugene, OR.
  • Wolin, S. L., and T. Cedervall. 2002. The La protein. Annu. Rev. Biochem. 71:375–403.
  • Zhang, A. T., et al. 2011. Dynamic interaction of Y RNAs with chromatin and initiation proteins during human DNA replication. J. Cell Sci. 124:2058–2069.
  • Zuker, M.. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31:3406–3415.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.