43
Views
46
CrossRef citations to date
0
Altmetric
Article

Regulation of MDM2 E3 Ligase Activity by Phosphorylation after DNA Damage

, , , , &
Pages 4951-4963 | Received 26 Apr 2011, Accepted 27 Sep 2011, Published online: 20 Mar 2023

REFERENCES

  • Banin, S., et al. 1998. Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677.
  • Barbash, O., et al. 2008. Mutations in Fbx4 inhibit dimerization of the SCF(Fbx4) ligase and contribute to cyclin D1 overexpression in human cancer. Cancer Cell 14:68–78.
  • Blattner, C., T. Hay, D. W. Meek, and D. P. Lane. 2002. Hypophosphorylation of Mdm2 augments p53 stability. Mol. Cell. Biol. 22:6170–6182.
  • Brzovic, P. S., P. Rajagopal, D. W. Hoyt, M. C. King, and R. E. Klevit. 2001. Structure of a BRCA1-BARD1 heterodimeric RING-RING complex. Nat. Struct. Biol. 8:833–837.
  • Chao, C., et al. 2003. Cell type- and promoter-specific roles of Ser18 phosphorylation in regulating p53 responses. J. Biol. Chem. 278:41028–41033.
  • Chao, C., D. Herr, J. Chun, and Y. Xu. 2006. Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression. EMBO J. 25:2615–2622.
  • Chehab, N. H., A. Malikzay, M. Appel, and T. D. Halazonetis. 2000. Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev. 14:278–288.
  • Chen, J., V. Marechal, and A. J. Levine. 1993. Mapping of the p53 and mdm-2 interaction domains. Mol. Cell. Biol. 13:4107–4114.
  • Cheng, Q., L. Chen, Z. Li, W. S. Lane, and J. Chen. 2009. ATM activates p53 by regulating MDM2 oligomerization and E3 processivity. EMBO J. 28:3857–3867.
  • Cross, B., et al. 2011. Inhibition of p53 DNA binding function by the MDM2 protein acidic domain. J. Biol. Chem. 286:16018–16029.
  • Dang, J., et al. 2002. The RING domain of Mdm2 can inhibit cell proliferation. Cancer Res. 62:1222–1230.
  • Dornan, D., et al. 2004. The ubiquitin ligase COP1 is a critical negative regulator of p53. Nature 429:86–92.
  • Fang, S., J. P. Jensen, R. L. Ludwig, K. H. Vousden, and A. M. Weissman. 2000. Mdm2 is a RING finger-dependent ubiquitin protein ligase for itself and p53. J. Biol. Chem. 275:8945–8951.
  • Harris, S. L., and A. J. Levine. 2005. The p53 pathway: positive and negative feedback loops. Oncogene 24:2899–2908.
  • Haupt, Y., R. Maya, A. Kazaz, and M. Oren. 1997. Mdm2 promotes the rapid degradation of p53. Nature 387:296–299.
  • Honda, R., H. Tanaka, and H. Yasuda. 1997. Oncoprotein MDM2 is a ubiquitin ligase E3 for tumor suppressor p53. FEBS Lett. 420:25–27.
  • Hu, C. D., Y. Chinenov, and T. K. Kerppola. 2002. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol. Cell 9:789–798.
  • Jones, S. N., A. E. Roe, L. A. Donehower, and A. Bradley. 1995. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378:206–208.
  • Kawai, H., D. Wiederschain, and Z. M. Yuan. 2003. Critical contribution of the MDM2 acidic domain to p53 ubiquitination. Mol. Cell. Biol. 23:4939–4947.
  • Kostic, M., T. Matt, M. A. Martinez-Yamout, H. J. Dyson, and P. E. Wright. 2006. Solution structure of the Hdm2 C2H2C4 RING, a domain critical for ubiquitination of p53. J. Mol. Biol. 363:433–450.
  • Kubbutat, M. H., S. N. Jones, and K. H. Vousden. 1997. Regulation of p53 stability by Mdm2. Nature 387:299–303.
  • Kulikov, R., K. A. Boehme, and C. Blattner. 2005. Glycogen synthase kinase 3-dependent phosphorylation of Mdm2 regulates p53 abundance. Mol. Cell. Biol. 25:7170–7180.
  • Kulikov, R., M. Winter, and C. Blattner. 2006. Binding of p53 to the central domain of Mdm2 is regulated by phosphorylation. J. Biol. Chem. 281:28575–28583.
  • Leng, R. P., et al. 2003. Pirh2, a p53-induced ubiquitin-protein ligase, promotes p53 degradation. Cell 112:779–791.
  • Li, W., et al. 2009. Mechanistic insights into active site-associated polyubiquitination by the ubiquitin-conjugating enzyme Ube2g2. Proc. Natl. Acad. Sci. U. S. A. 106:3722–3727.
  • Linke, K., et al. 2008. Structure of the MDM2/MDMX RING domain heterodimer reveals dimerization is required for their ubiquitylation in trans. Cell Death Differ. 15:841–848.
  • MacPherson, D., et al. 2004. Defective apoptosis and B-cell lymphomas in mice with p53 point mutation at Ser 23. EMBO J. 23:3689–3699.
  • Maki, C. G., and P. M. Howley. 1997. Ubiquitination of p53 and p21 is differentially affected by ionizing and UV radiation. Mol. Cell. Biol. 17:355–363.
  • Maya, R., et al. 2001. ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage. Genes Dev. 15:1067–1077.
  • Mayo, L. D., J. J. Turchi, and S. J. Berberich. 1997. Mdm-2 phosphorylation by DNA-dependent protein kinase prevents interaction with p53. Cancer Res. 57:5013–5016.
  • Meulmeester, E., et al. 2003. Critical role for a central part of Mdm2 in the ubiquitylation of p53. Mol. Cell. Biol. 23:4929–4938.
  • Montes de Oca Luna, R., D. S. Wagner, and G. Lozano. 1995. Rescue of early embryonic lethality in mdm2-deficient mice by deletion of p53. Nature 378:203–206.
  • Phan, J., et al. 2010. Structure-based design of high-affinity peptides inhibiting the interaction of p53 with MDM2 and MDMX. J. Biol. Chem. 285:2174–2183.
  • Poyurovsky, M. V., et al. 2007. The Mdm2 RING domain C terminus is required for supramolecular assembly and ubiquitin ligase activity. EMBO J. 26:90–101.
  • Prives, C., and P. A. Hall. 1999. The p53 pathway. J. Pathol. 187:112–126.
  • Sasaki, M., L. Nie, and C. G. Maki. 2007. MDM2 binding induces a conformational change in p53 that is opposed by heat-shock protein 90 and precedes p53 proteasomal degradation. J. Biol. Chem. 282:14626–14634.
  • Sherr, C. J. 2006. Divorcing ARF and p53: an unsettled case. Nat. Rev. Cancer 6:663–673.
  • Shieh, S. Y., J. Ahn, K. Tamai, Y. Taya, and C. Prives. 2000. The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev. 14:289–300.
  • Shieh, S. Y., M. Ikeda, Y. Taya, and C. Prives. 1997. DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334.
  • Shinozaki, T., A. Nota, Y. Taya, and K. Okamoto. 2003. Functional role of Mdm2 phosphorylation by ATR in attenuation of p53 nuclear export. Oncogene 22:8870–8880.
  • Sionov, R. V., et al. 2001. c-Abl regulates p53 levels under normal and stress conditions by preventing its nuclear export and ubiquitination. Mol. Cell. Biol. 21:5869–5878.
  • Sivakolundu, S. G., et al. 2008. Intrinsically unstructured domains of Arf and Hdm2 form bimolecular oligomeric structures in vitro and in vivo. J. Mol. Biol. 384:240–254.
  • Tang, X., et al. 2007. Suprafacial orientation of the SCFCdc4 dimer accommodates multiple geometries for substrate ubiquitination. Cell 129:1165–1176.
  • Tanimura, S., et al. 1999. MDM2 interacts with MDMX through their RING finger domains. FEBS Lett. 447:5–9.
  • Uldrijan, S., W. J. Pannekoek, and K. H. Vousden. 2007. An essential function of the extreme C terminus of MDM2 can be provided by MDMX. EMBO J. 26:102–112.
  • Wallace, M., E. Worrall, S. Pettersson, T. R. Hupp, and K. L. Ball. 2006. Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol. Cell 23:251–263.
  • Wawrzynow, B., et al. 2009. A function for the RING finger domain in the allosteric control of MDM2 conformation and activity. J. Biol. Chem. 284:11517–11530.
  • Yu, G. W., et al. 2006. The central region of HDM2 provides a second binding site for p53. Proc. Natl. Acad. Sci. U. S. A. 103:1227–1232.
  • Zhang, L., et al. 2011. The IDOL-UBE2D complex mediates sterol-dependent degradation of the LDL receptor. Genes Dev. 25:1262–1274.
  • Zhang, Y., and H. Lu. 2009. Signaling to p53: ribosomal proteins find their way. Cancer Cell 16:369–377.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.