11
Views
30
CrossRef citations to date
0
Altmetric
Article

Phosphorylated Grb14 Is an Endogenous Inhibitor of Retinal Protein Tyrosine Phosphatase 1B, and Light-Dependent Activation of Src Phosphorylates Grb14

, , , &
Pages 3975-3987 | Received 18 May 2011, Accepted 15 Jul 2011, Published online: 20 Mar 2023

REFERENCES

  • Ala, P. J., et al. 2006. Structural insights into the design of nonpeptidic isothiazolidinone-containing inhibitors of protein-tyrosine phosphatase 1B. J. Biol. Chem. 281:38013–38021.
  • Asante-Appiah, E., et al. 2002. The structure of PTP-1B in complex with a peptide inhibitor reveals an alternative binding mode for bisphosphonates. Biochemistry 41:9043–9051.
  • Barrett, W. C., et al. 1999. Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38:6699–6705.
  • Bence, K. K., et al. 2006. Neuronal PTP1B regulates body weight, adiposity and leptin action. Nat. Med. 12:917–924.
  • Bereziat, V., et al. 2002. Inhibition of insulin receptor catalytic activity by the molecular adapter Grb14. J. Biol. Chem. 277:4845–4852.
  • Bjorge, J. D., A. Pang, and D. J. Fujita. 2000. Identification of protein-tyrosine phosphatase 1B as the major tyrosine phosphatase activity capable of dephosphorylating and activating c-Src in several human breast cancer cell lines. J. Biol. Chem. 275:41439–41446.
  • Blom, N., S. Gammeltoft, and S. Brunak. 1999. Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J. Mol. Biol. 294:1351–1362.
  • Combs, A. P. 2010. Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer. J. Med. Chem. 53:2333–2344.
  • Cooney, G. J., et al. 2004. Improved glucose homeostasis and enhanced insulin signalling in Grb14-deficient mice. EMBO J. 23:582–593.
  • Dadke, S., et al. 2007. Regulation of protein tyrosine phosphatase 1B by sumoylation. Nat. Cell Biol. 9:80–85.
  • Daly, R. J. 1998. The Grb7 family of signalling proteins. Cell. Signal. 10:613–618.
  • Daly, R. J., G. M. Sanderson, P. W. Janes, and R. L. Sutherland. 1996. Cloning and characterization of GRB14, a novel member of the GRB7 gene family. J. Biol. Chem. 271:12502–12510.
  • Depetris, R. S., et al. 2005. Structural basis for inhibition of the insulin receptor by the adaptor protein Grb14. Mol. Cell 20:325–333.
  • Depetris, R. S., J. Wu, and S. R. Hubbard. 2009. Structural and functional studies of the Ras-associating and pleckstrin-homology domains of Grb10 and Grb14. Nat. Struct. Mol. Biol. 16:833–839.
  • Dube, N., A. Cheng, and M. L. Tremblay. 2004. The role of protein tyrosine phosphatase 1B in Ras signaling. Proc. Natl. Acad. Sci. U. S. A. 101:1834–1839.
  • Fukada, T., and N. K. Tonks. 2003. Identification of YB-1 as a regulator of PTP1B expression: implications for regulation of insulin and cytokine signaling. EMBO J. 22:479–493.
  • Ghalayini, A. J., et al. 2002. Light-dependent association of Src with photoreceptor rod outer segment membrane proteins in vivo. J. Biol. Chem. 277:1469–1476.
  • Groves, M. R., Z. J. Yao, P. P. Roller, T. R. Burke, Jr., and D. Barford. 1998. Structural basis for inhibition of the protein tyrosine phosphatase 1B by phosphotyrosine peptide mimetics. Biochemistry 37:17773–17783.
  • Gupta, V. K., A. Rajala, R. J. Daly, and R. V. Rajala. 2010. Growth factor receptor-bound protein 14: a new modulator of photoreceptor-specific cyclic-nucleotide-gated channel. EMBO Rep. 11:861–867.
  • Holt, L. J., and K. Siddle. 2005. Grb10 and Grb14: enigmatic regulators of insulin action—and more? Biochem. J. 388:393–406.
  • Ingraham, C. A., M. P. Cooke, Y. N. Chuang, R. M. Perlmutter, and P. F. Maness. 1992. Cell type and developmental regulation of the fyn proto-oncogene in neural retina. Oncogene 7:95–100.
  • Ivanovic, I., et al. 2011. Deletion of the p85alpha regulatory subunit of phosphoinositide 3-kinase in cone photoreceptor cells results in cone photoreceptor degeneration. Invest. Ophthalmol. Vis. Sci. 52:3775–3783.
  • Kasus-Jacobi, A., et al. 1998. Identification of the rat adapter Grb14 as an inhibitor of insulin actions. J. Biol. Chem. 273:26026–26035.
  • Langlais, P., L. Q. Dong, D. Hu, and F. Liu. 2000. Identification of Grb10 as a direct substrate for members of the Src tyrosine kinase family. Oncogene 19:2895–2903.
  • Le, Y. Z., et al. 2006. Mouse opsin promoter-directed Cre recombinase expression in transgenic mice. Mol. Vis. 12:389–398.
  • Li, G., et al. 2007. Nonredundant role of Akt2 for neuroprotection of rod photoreceptor cells from light-induced cell death. J. Neurosci. 27:203–211.
  • Li, G., A. Rajala, A. F. Wiechmann, R. E. Anderson, and R. V. Rajala. 2008. Activation and membrane binding of retinal protein kinase Balpha/Akt1 is regulated through light-dependent generation of phosphoinositides. J. Neurochem. 107:1382–1397.
  • Lin, R. C., et al. 2010. PI3K(p110 alpha) protects against myocardial infarction-induced heart failure: identification of PI3K-regulated miRNA and mRNA. Arterioscler. Thromb. Vasc. Biol. 30:724–732.
  • Punzo, C., K. Kornacker, and C. L. Cepko. 2009. Stimulation of the insulin/mTOR pathway delays cone death in a mouse model of retinitis pigmentosa. Nat. Neurosci. 12:44–52.
  • Rajala, A., et al. 2007. G-protein-coupled receptor rhodopsin regulates the phosphorylation of retinal insulin receptor. J. Biol. Chem. 282:9865–9873.
  • Rajala, A., et al. 2009. Growth factor receptor-bound protein 14 undergoes light-dependent intracellular translocation in rod photoreceptors: functional role in retinal insulin receptor activation. Biochemistry 48:5563–5572.
  • Rajala, A., M. Tanito, Y. Z. Le, C. R. Kahn, and R. V. Rajala. 2008. Loss of neuroprotective survival signal in mice lacking insulin receptor gene in rod photoreceptor cells. J. Biol. Chem. 283:19781–19792.
  • Rajala, R. V., M. E. McClellan, M. D. Chan, L. Tsiokas, and R. E. Anderson. 2004. Interaction of the retinal insulin receptor beta-subunit with the P85 subunit of phosphoinositide 3-kinase. Biochemistry 43:5637–5650.
  • Rajala, R. V., M. Tanito, B. G. Neel, and A. Rajala. 2010. Enhanced retinal insulin receptor-activated neuroprotective survival signal in mice lacking the protein-tyrosine phosphatase-1B gene. J. Biol. Chem. 285:8894–8904.
  • Rajala, R. V., B. Wiskur, M. Tanito, M. Callegan, and A. Rajala. 2009. Diabetes reduces autophosphorylation of retinal insulin receptor and increases protein-tyrosine phosphatase-1B activity. Invest. Ophthalmol. Vis. Sci. 50:1033–1040.
  • Ravichandran, L. V., H. Chen, Y. Li, and M. J. Quon. 2001. Phosphorylation of PTP1B at Ser(50) by Akt impairs its ability to dephosphorylate the insulin receptor. Mol. Endocrinol. 15:1768–1780.
  • Redmond, T. M., et al. 1998. Rpe65 is necessary for production of 11-cis-vitamin A in the retinal visual cycle. Nat. Genet. 20:344–351.
  • Salmeen, A., et al. 2003. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate. Nature 423:769–773.
  • Sorge, L. K., B. T. Levy, and P. F. Maness. 1984. pp60c-src is developmentally regulated in the neural retina. Cell 36:249–257.
  • Taghibiglou, C., et al. 2002. Hepatic very low density lipoprotein-ApoB overproduction is associated with attenuated hepatic insulin signaling and overexpression of protein-tyrosine phosphatase 1B in a fructose-fed hamster model of insulin resistance. J. Biol. Chem. 277:793–803.
  • Zabolotny, J. M., et al. 2002. PTP1B regulates leptin signal transduction in vivo. Dev. Cell 2:489–495.
  • Zheng, L., R. E. Anderson, M. P. Agbaga, E. B. Rucker, III, and Y. Z. Le. 2006. Loss of BCL-XL in rod photoreceptors: increased susceptibility to bright light stress. Invest. Ophthalmol. Vis. Sci. 47:5583–5589.
  • Zhu, S., J. D. Bjorge, and D. J. Fujita. 2007. PTP1B contributes to the oncogenic properties of colon cancer cells through Src activation. Cancer Res. 67:10129–10137.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.