61
Views
56
CrossRef citations to date
0
Altmetric
Article

Developmental Regulation of MicroRNA Expression in Schwann Cells

, , , &
Pages 558-568 | Received 12 Sep 2011, Accepted 30 Oct 2011, Published online: 20 Mar 2023

REFERENCES

  • Addo-Yobo SO, et al. 2006. Paired overexpression of ErbB3 and Sox10 in pilocytic astrocytoma. J. Neuropathol Exp. Neurol. 65: 769–775.
  • Atanasoski S, et al. 2006. Cell cycle inhibitors p21 and p16 are required for the regulation of Schwann cell proliferation. Glia 53: 147–157.
  • Awatramani R, Shumas S, Kamholz J, Scherer SS. 2002. TGFbeta1 modulates the phenotype of Schwann cells at the transcriptional level. Mol. Cell. Neurosci. 19: 307–319.
  • Bourikas D, Mir A, Walmsley AR. 2010. LINGO-1-mediated inhibition of oligodendrocyte differentiation does not require the leucine-rich repeats and is reversed by p75(NTR) antagonists. Mol. Cell. Neurosci. 45: 363–369.
  • Bremer J, et al. 2010. Ablation of Dicer from murine Schwann cells increases their proliferation while blocking myelination. PLoS One 5: e12450.
  • Bremer M, et al. 2011. Sox10 is required for Schwann-cell homeostasis and myelin maintenance in the adult peripheral nerve. Glia 59: 1022–1032.
  • Britsch S, et al. 2001. The transcription factor Sox10 is a key regulator of peripheral glial development. Genes Dev. 15: 66–78.
  • Buchstaller J, et al. 2004. Efficient isolation and gene expression profiling of small numbers of neural crest stem cells and developing Schwann cells. J. Neurosci. 24: 2357–2365.
  • Budde H, et al. 2010. Control of oligodendroglial cell number by the miR-17-2 cluster. Development 137: 2127–2132.
  • D'Antonio M, et al. 2006. Gene profiling and bioinformatic analysis of Schwann cell embryonic development and myelination. Glia 53: 501–515.
  • Diosdado B, et al. 2009. MiR-17-92 cluster is associated with 13q gain and c-myc expression during colorectal adenoma to adenocarcinoma progression. Br. J. Cancer 101: 707–714.
  • Dugas JC, et al. 2010. Dicer1 and miR-219 are required for normal oligodendrocyte differentiation and myelination. Neuron 65: 597–611.
  • Dugas JC, Notterpek L. 2011. MicroRNAs in oligodendrocyte and Schwann cell differentiation. Dev. Neurosci. 33: 14–20.
  • Ferletta M, Uhrbom L, Olofsson T, Pontén F, Westermark B. 2007. Sox10 has a broad expression pattern in gliomas and enhances platelet-derived growth factor-B-induced gliomagenesis. Mol. Cancer Res. 5: 891–897.
  • Finzsch M, et al. 2010. Sox10 is required for Schwann cell identity and progression beyond the immature Schwann cell stage. J. Cell Biol. 189: 701–712.
  • Finzsch M, Stolt CC, Lommes P, Wegner M. 2008. Sox9 and Sox10 influence survival and migration of oligodendrocyte precursors in the spinal cord by regulating PDGF receptor alpha expression. Development 135: 637–646.
  • Fujita PA, et al. 2011. The UCSC Genome Browser database: update 2011. Nucleic Acids Res. 39: D876–D882.
  • Garzon R, Calin GA, Croce CM. 2009. MicroRNAs in cancer. Annu. Rev. Med. 60: 167–179.
  • Ghislain J, Charnay P. 2006. Control of myelination in Schwann cells: a Krox20 cis-regulatory element integrates Oct6, Brn2 and Sox10 activities. EMBO Rep. 7: 52–58.
  • Gibbs RA, et al. 2004. Genome sequence of the brown Norway rat yields insights into mammalian evolution. Nature 428: 493–521.
  • Hai M, Muja N, DeVries GH, Quarles RH, Patel PI. 2002. Comparative analysis of Schwann cell lines as model systems for myelin gene transcription studies. J. Neurosci. Res. 69: 497–508.
  • He L, et al. 2005. A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.
  • He X, Yu Y, Awatramani R, Lu QR. 2 May 2011, posting date. Unwrapping myelination by microRNAs. Neuroscientist [Epub ahead of print.] https://doi.org/10.1177/1073858410392382.
  • Honoré SM, Aybar MJ, Mayor R. 2003. Sox10 is required for the early development of the prospective neural crest in Xenopus embryos. Dev. Biol. 260: 79–96.
  • Ivanovska I, et al. 2008. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol. Cell. Biol. 28: 2167–2174.
  • Jang SW, et al. 2010. Locus-wide identification of Egr2/Krox20 regulatory targets in myelin genes. J. Neurochem. 115: 1409–1420.
  • Jang SW, Svaren J. 2009. Induction of myelin protein zero by early growth response 2 through upstream and intragenic elements. J. Biol. Chem. 284: 20111–20120.
  • Jessen KR, Mirsky R. 2005. The origin and development of glial cells in peripheral nerves. Nat. Rev. Neurosci. 6: 671–682.
  • Johansson FK, et al. 2004. Identification of candidate cancer-causing genes in mouse brain tumors by retroviral tagging. Proc. Natl. Acad. Sci. U. S. A. 101: 11334–11337.
  • Jones EA, et al. 2007. Interactions of Sox10 and Egr2 in myelin gene regulation. Neuron Glia Biol. 3: 377–387.
  • Jones EA, et al. 2011. Regulation of the PMP22 gene through an intronic enhancer. J. Neurosci. 31: 4242–4250.
  • Kim J, Lo L, Dormand E, Anderson DJ. 2003. SOX10 maintains multipotency and inhibits neuronal differentiation of neural crest stem cells. Neuron 38: 17–31.
  • Leblanc SE, et al. 2005. Regulation of cholesterol/lipid biosynthetic genes by Egr2/Krox20 during peripheral nerve myelination. J. Neurochem. 93: 737–748.
  • LeBlanc SE, Ward RM, Svaren J. 2007. Neuropathy-associated Egr2 mutants disrupt cooperative activation of myelin protein zero by Egr2 and Sox10. Mol. Cell. Biol. 27: 3521–3529.
  • Liang Y, Ridzon D, Wong L, Chen C. 2007. Characterization of microRNA expression profiles in normal human tissues. BMC Genomics 8: 166.
  • Livak KJ, Schmittgen TD. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2(− Delta Delta C(T)) method. Methods 25: 402–408.
  • Mager GM, et al. 2008. Active gene repression by the EGR2/NAB complex during peripheral nerve myelination. J. Biol. Chem. 283: 18187–18197.
  • Maunakea AK, et al. 2010. Conserved role of intragenic DNA methylation in regulating alternative promoters. Nature 466: 253–257.
  • Murchison EP, et al. 2010. The Tasmanian devil transcriptome reveals Schwann cell origins of a clonally transmissible cancer. Science 327: 84–87.
  • Nagarajan R, et al. 2001. EGR2 mutations in inherited neuropathies dominant-negatively inhibit myelin gene expression. Neuron 30: 355–368.
  • Nave KA, Salzer JL. 2006. Axonal regulation of myelination by neuregulin 1. Curr. Opin. Neurobiol. 16: 492–500.
  • O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. 2005. c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435: 839–843.
  • Olive V, Jiang I, He L. 2010. mir-17-92, a cluster of miRNAs in the midst of the cancer network. Int. J. Biochem. Cell Biol. 42: 1348–1354.
  • Parkinson DB, et al. 2004. Krox-20 inhibits Jun-NH2-terminal kinase/c-Jun to control Schwann cell proliferation and death. J. Cell Biol. 164: 385–394.
  • Peirano RI, Goerich DE, Riethmacher D, Wegner M. 2000. Protein zero gene expression is regulated by the glial transcription factor Sox10. Mol. Cell. Biol. 20: 3198–3209.
  • Peirano RI, Wegner M. 2000. The glial transcription factor Sox10 binds to DNA both as monomer and dimer with different functional consequences. Nucleic Acids Res. 28: 3047–3055.
  • Pereira JA, et al. 2010. Dicer in Schwann cells is required for myelination and axonal integrity. J. Neurosci. 30: 6763–6775.
  • Petrocca F, et al. 2008. E2F1-regulated microRNAs impair TGFbeta-dependent cell-cycle arrest and apoptosis in gastric cancer. Cancer Cell 13: 272–286.
  • Plasterk RH. 2006. Micro RNAs in animal development. Cell 124: 877–881.
  • Pospisil V, et al. 2011. Epigenetic silencing of the oncogenic miR-17-92 cluster during PU. 1-directed macrophage differentiation. EMBO J. 30: 4450–4464.
  • Reiprich S, Kriesch J, Schreiner S, Wegner M. 2010. Activation of Krox20 gene expression by Sox10 in myelinating Schwann cells. J. Neurochem. 112: 744–754.
  • Rimsza LM, et al. 2008. Gene expression predicts overall survival in paraffin-embedded tissues of diffuse large B-cell lymphoma treated with R-CHOP. Blood 112: 3425–3433.
  • Roberts RA, et al. 2007. Quantitative nuclease protection assay in paraffin-embedded tissue replicates prognostic microarray gene expression in diffuse large-B-cell lymphoma. Lab Invest. 87: 979–997.
  • Roh J, et al. 2006. Down-regulation of Sox10 with specific small interfering RNA promotes transdifferentiation of Schwannoma cells into myofibroblasts. Differentiation 74: 542–551.
  • Schulte JH, et al. 2008. MYCN regulates oncogenic MicroRNAs in neuroblastoma. Int. J. Cancer 122: 699–704.
  • Scott CE, et al. 2010. SOX9 induces and maintains neural stem cells. Nat. Neurosci. 13: 1181–1189.
  • Sonnenberg-Riethmacher E, et al. 2001. Development and degeneration of dorsal root ganglia in the absence of the HMG-domain transcription factor Sox10. Mech. Dev. 109: 253–265.
  • Stolt CC, et al. 2002. Terminal differentiation of myelin-forming oligodendrocytes depends on the transcription factor Sox10. Genes Dev. 16: 165–170.
  • Stolt CC, Wegner M. 2010. SoxE function in vertebrate nervous system development. Int. J. Biochem. Cell Biol. 42: 437–440.
  • Tay Y, Zhang J, Thomson AM, Lim B, Rigoutsos I. 2008. MicroRNAs to Nanog, Oct4 and Sox2 coding regions modulate embryonic stem cell differentiation. Nature 455: 1124–1128.
  • Topilko P, et al. 1994. Krox-20 controls myelination in the peripheral nervous system. Nature 371: 796–799.
  • Uren AG, et al. 2008. Large-scale mutagenesis in p19(ARF)- and p53-deficient mice identifies cancer genes and their collaborative networks. Cell 133: 727–741.
  • Valouev A, et al. 2008. Genome-wide analysis of transcription factor binding sites based on ChIP-Seq data. Nat. Methods 5: 829–834.
  • Ventura A, et al. 2008. Targeted deletion reveals essential and overlapping functions of the miR-17 through 92 family of miRNA clusters. Cell 132: 875–886.
  • Verheijen MH, Chrast R, Burrola P, Lemke G. 2003. Local regulation of fat metabolism in peripheral nerves. Genes Dev. 17: 2450–2464.
  • Verrier JD, et al. 2009. Peripheral myelin protein 22 is regulated post-transcriptionally by miRNA-29a. Glia 57: 1265–1279.
  • Verrier JD, Semple-Rowland S, Madorsky I, Papin JE, Notterpek L. 2010. Reduction of Dicer impairs Schwann cell differentiation and myelination. J. Neurosci. Res. 88: 2558–2568.
  • Wegner M, Stolt CC. 2005. From stem cells to neurons and glia: a Soxist's view of neural development. Trends Neurosci. 28: 583–588.
  • Wong P, et al. 2010. The miR-17-92 microRNA polycistron regulates MLL leukemia stem cell potential by modulating p21 expression. Cancer Res. 70: 3833–3842.
  • Woodhoo A, et al. 2009. Notch controls embryonic Schwann cell differentiation, postnatal myelination and adult plasticity. Nat. Neurosci. 12: 839–847.
  • Yun B, et al. 2010. MicroRNA-deficient Schwann cells display congenital hypomyelination. J. Neurosci. 30: 7722–7728.
  • Zhao X, et al. 2010. MicroRNA-mediated control of oligodendrocyte differentiation. Neuron 65: 612–626.
  • Zorick TS, Syroid DE, Arroyo E, Scherer SS, Lemke G. 1996. The transcription factors SCIP and Krox-20 mark distinct stages and cell fates in Schwann cell differentiation. Mol. Cell. Neurosci. 8(23): 129–145.
  • Zorick TS, Syroid DE, Brown A, Gridley T, Lemke G. 1999. Krox-20 controls SCIP expression, cell cycle exit and susceptibility to apoptosis in developing myelinating Schwann cells. Development 126: 1397–1406.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.