59
Views
38
CrossRef citations to date
0
Altmetric
Article

Altered Replication in Human Cells Promotes DMPK (CTG)n · (CAG)n Repeat Instability

, , , , &
Pages 1618-1632 | Received 15 Dec 2011, Accepted 10 Feb 2012, Published online: 20 Mar 2023

REFERENCES

  • Abdurashidova G, et al. 2003. Localization of proteins bound to a replication origin of human DNA along the cell cycle. EMBO J. 22:4294–4303.
  • Aladjem MI. 2007. Replication in context: dynamic regulation of DNA replication patterns in metazoans. Nat. Rev. Genet. 8:588–600.
  • Balakumaran BS, Freudenreich CH, Zakian VA. 2000. CGG/CCG repeats exhibit orientation-dependent instability and orientation-independent fragility in Saccharomyces cerevisiae. Hum. Mol. Genet. 9:93–100.
  • Bando M, et al. 2009. Csm3, Tof1, and Mrc1 form a heterotrimeric mediator complex that associates with DNA replication forks. J. Biol. Chem. 284:34355–34365.
  • Bansbach CE, Betous R, Lovejoy CA, Glick GG, Cortez D. 2009. The annealing helicase SMARCAL1 maintains genome integrity at stalled replication forks. Genes Dev. 23:2405–2414.
  • Bell SP, Dutta A. 2002. DNA replication in eukaryotic cells. Annu. Rev. Biochem. 71:333–374.
  • Bolon YT, Bielinsky AK. 2006. The spatial arrangement of ORC binding modules determines the functionality of replication origins in budding yeast. Nucleic Acids Res. 34:5069–5080.
  • Branzei D, Foiani M. 2009. The checkpoint response to replication stress. DNA Repair 8:1038–1046.
  • Brylawski BP, Chastain PDII, Cohen SM, Cordeiro-Stone M, Kaufman DG. 2007. Mapping of an origin of DNA replication in the promoter of fragile X gene FMR1. Exp. Mol. Pathol. 82:190–196.
  • Cha RS, Kleckner N. 2002. ATR homolog Mec1 promotes fork progression, thus averting breaks in replication slow zones. Science 297:602–606.
  • Chastain PDII, Cohen SM, Brylawski BP, Cordeiro-Stone M, Kaufman DG. 2006. A late origin of DNA replication in the trinucleotide repeat region of the human FMR2 gene. Cell Cycle 5:869–872.
  • Chini CC, Chen J. 2003. Human claspin is required for replication checkpoint control. J. Biol. Chem. 278:30057–30062.
  • Cho DH, Tapscott SJ. 2007. Myotonic dystrophy: emerging mechanisms for DM1 and DM2. Biochim. Biophys. Acta 1772:195–204.
  • Cho DH, et al. 2005. Antisense transcription and heterochromatin at the DM1 CTG repeats are constrained by CTCF. Mol. Cell 20:483–489.
  • Chowdhury A, et al. 2010. The DNA unwinding element binding protein DUE-B interacts with Cdc45 in preinitiation complex formation. Mol. Cell. Biol. 30:1495–1507.
  • Cimprich KA, Cortez D. 2008. ATR: an essential regulator of genome integrity. Nat. Rev. Mol. Cell Biol. 9:616–627.
  • Cleary JD, Nichol K, Wang YH, Pearson CE. 2002. Evidence of cis-acting factors in replication-mediated trinucleotide repeat instability in primate cells. Nat. Genet. 31:37–46.
  • Cleary JD, Pearson CE. 2005. Replication fork dynamics and dynamic mutations: the fork-shift model of repeat instability. Trends Genet. 21:272–280.
  • Cleary JD, et al. 2010. Tissue- and age-specific DNA replication patterns at the CTG/CAG-expanded human myotonic dystrophy type 1 locus. Nat. Struct. Mol. Biol. 17:1079–1087.
  • Cobb JA, et al. 2005. Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations. Genes Dev. 19:3055–3069.
  • Cox MM, et al. 2000. The importance of repairing stalled replication forks. Nature 404:37–41.
  • Delagoutte E, Goellner GM, Guo J, Baldacci G, McMurray CT. 2008. Single-stranded DNA-binding protein in vitro eliminates the orientation-dependent impediment to polymerase passage on CAG/CTG repeats. J. Biol. Chem. 283:13341–13356.
  • DePamphilis ML, et al. 2006. Regulating the licensing of DNA replication origins in metazoa. Curr. Opin. Cell Biol. 18:231–239.
  • Di Paola D, Rampakakis E, Chan MK, Arvanitis DN, Zannis-Hadjopoulos M. 2010. Increased origin activity in transformed versus normal cells: identification of novel protein players involved in DNA replication and cellular transformation. Nucleic Acids Res. 38:2314–2331.
  • Entezam A, Usdin K. 2009. ATM and ATR protect the genome against two different types of tandem repeat instability in Fragile X premutation mice. Nucleic Acids Res. 37:6371–6377.
  • Errico A, Costanzo V, Hunt T. 2007. Tipin is required for stalled replication forks to resume DNA replication after removal of aphidicolin in Xenopus egg extracts. Proc. Natl. Acad. Sci. U. S. A. 104:14929–14934.
  • Filippova GN, et al. 2001. CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat. Genet. 28:335–343.
  • Fortune MT, Vassilopoulos C, Coolbaugh MI, Siciliano MJ, Monckton DG. 2000. Dramatic, expansion-biased, age-dependent, tissue-specific somatic mosaicism in a transgenic mouse model of triplet repeat instability. Hum. Mol. Genet. 9:439–445.
  • Freudenreich CH, Kantrow SM, Zakian VA. 1998. Expansion and length-dependent fragility of CTG repeats in yeast. Science 279:853–856.
  • Freudenreich CH, Lahiri M. 2004. Structure-forming CAG/CTG repeat sequences are sensitive to breakage in the absence of Mrc1 checkpoint function and S-phase checkpoint signaling: implications for trinucleotide repeat expansion diseases. Cell Cycle 3:1370–1374.
  • Freudenreich CH, Stavenhagen JB, Zakian VA. 1997. Stability of a CTG/CAG trinucleotide repeat in yeast is dependent on its orientation in the genome. Mol. Cell. Biol. 17:2090–2098.
  • Gennarelli M, et al. 1998. Genomic instability associated with myotonic dystrophy does not involve p53 expression and activity. Cell Biochem. Funct. 16:117–122.
  • Ghosh M, et al. 2006. Differential binding of replication proteins across the human c-myc replicator. Mol. Cell. Biol. 26:5270–5283.
  • Ghosh M, Liu G, Randall G, Bevington J, Leffak M. 2004. Transcription factor binding and induced transcription alter chromosomal c-myc replicator activity. Mol. Cell. Biol. 24:10193–10207.
  • Gomes-Pereira M, Cooper TA, Gourdon G. 2011. Myotonic dystrophy mouse models: towards rational therapy development. Trends Mol. Med. 17:506–517.
  • Gomes-Pereira M, Monckton DG. 2004. Chemically induced increases and decreases in the rate of expansion of a CAG*CTG triplet repeat. Nucleic Acids Res. 32:2865–2872.
  • Gray SJ, Gerhardt J, Doerfler W, Small LE, Fanning E. 2007. An origin of DNA replication in the promoter region of the human fragile X mental retardation (FMR1) gene. Mol. Cell. Biol. 27:426–437.
  • Guiraud-Dogan C, et al. 2007. DM1 CTG expansions affect insulin receptor isoforms expression in various tissues of transgenic mice. Biochim. Biophys. Acta 1772:1183–1191.
  • Hansen RS, et al. 2010. Sequencing newly replicated DNA reveals widespread plasticity in human replication timing. Proc. Natl. Acad. Sci. U. S. A. 107:139–144.
  • Hartenstine MJ, Goodman MF, Petruska J. 2000. Base stacking and even/odd behavior of hairpin loops in DNA triplet repeat slippage and expansion with DNA polymerase. J. Biol. Chem. 275:18382–18390.
  • Hashem VI, et al. 2004. Chemotherapeutic deletion of CTG repeats in lymphoblast cells from DM1 patients. Nucleic Acids Res. 32:6334–6346.
  • Kamath S, Leffak M. 2001. Multiple sites of replication initiation in the human beta-globin gene locus. Nucleic Acids Res. 29:809–817.
  • Kang S, Jaworski A, Ohshima K, Wells RD. 1995. Expansion and deletion of CTG repeats from human disease genes are determined by the direction of replication in E. coli. Nat. Genet. 10:213–218.
  • Keller C, Ladenburger EM, Kremer M, Knippers R. 2002. The origin recognition complex marks a replication origin in the human TOP1 gene promoter. J. Biol. Chem. 277:31430–31440.
  • Kemp MG, et al. 2010. Tipin-replication protein A interaction mediates Chk1 phosphorylation by ATR in response to genotoxic stress. J. Biol. Chem. 285:16562–16571.
  • Kemp MG, Ghosh M, Liu G, Leffak M. 2005. The histone deacetylase inhibitor trichostatin A alters the pattern of DNA replication origin activity in human cells. Nucleic Acids Res. 33:325–336.
  • Kim SH, Pytlos MJ, Rosche WA, Sinden RR. 2006. (CAG)*(CTG) repeats associated with neurodegenerative diseases are stable in the Escherichia coli chromosome. J. Biol. Chem. 281:27950–27955.
  • Klesert TR, Otten AD, Bird TD, Tapscott SJ. 1997. Trinucleotide repeat expansion at the myotonic dystrophy locus reduces expression of DMAHP. Nat. Genet. 16:402–406.
  • Krasilnikova MM, Mirkin SM. 2004. Replication stalling at Friedreich's ataxia (GAA)n repeats in vivo. Mol. Cell. Biol. 24:2286–2295.
  • Kumagai A, Kim SM, Dunphy WG. 2004. Claspin and the activated form of ATR-ATRIP collaborate in the activation of Chk1. J. Biol. Chem. 279:49599–49608.
  • Lahiri M, Gustafson TL, Majors ER, Freudenreich CH. 2004. Expanded CAG repeats activate the DNA damage checkpoint pathway. Mol. Cell 15:287–293.
  • Leffak M, James CD. 1989. Opposite replication polarity of the germ line c-myc gene in HeLa cells compared with that of two Burkitt lymphoma cell lines. Mol. Cell. Biol. 9:586–593.
  • Letessier A, et al. 2011. Cell-type-specific replication initiation programs set fragility of the FRA3B fragile site. Nature 470:120–123.
  • Lia AS, et al. 1998. Somatic instability of the CTG repeat in mice transgenic for the myotonic dystrophy region is age dependent but not correlated to the relative intertissue transcription levels and proliferative capacities. Hum. Mol. Genet. 7:1285–1291.
  • Liu G, Bissler JJ, Sinden RR, Leffak M. 2007. Unstable spinocerebellar ataxia type 10 (ATTCT)*(AGAAT) repeats are associated with aberrant replication at the ATX10 locus and replication origin-dependent expansion at an ectopic site in human cells. Mol. Cell. Biol. 27:7828–7838.
  • Liu G, Chen X, Bissler JJ, Sinden RR, Leffak M. 2010. Replication-dependent instability at (CTG) x (CAG) repeat hairpins in human cells. Nat. Chem. Biol. 6:652–659.
  • Liu G, Malott M, Leffak M. 2003. Multiple functional elements comprise a mammalian chromosomal replicator. Mol. Cell. Biol. 23:1832–1842.
  • Lopez Castel A, Tomkinson AE, Pearson CE. 2009. CTG/CAG repeat instability is modulated by the levels of human DNA ligase I and its interaction with proliferating cell nuclear antigen: a distinction between replication and slipped-DNA repair. J. Biol. Chem. 284:26631–26645.
  • Lu L, Tower J. 1997. A transcriptional insulator element, the su(Hw) binding site, protects a chromosomal DNA replication origin from position effects. Mol. Cell. Biol. 17:2202–2206.
  • MacAlpine DM, Rodriguez HK, Bell SP. 2004. Coordination of replication and transcription along a Drosophila chromosome. Genes Dev. 18:3094–3105.
  • Machida YJ, Hamlin JL, Dutta A. 2005. Right place, right time, and only once: replication initiation in metazoans. Cell 123:13–24.
  • Mahadevan M, et al. 1992. Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 255:1253–1255.
  • Maurer DJ, O'Callaghan BL, Livingston DM. 1996. Orientation dependence of trinucleotide CAG repeat instability in Saccharomyces cerevisiae. Mol. Cell. Biol. 16:6617–6622.
  • Miret JJ, Pessoa-Brandao L, Lahue RS. 1998. Orientation-dependent and sequence-specific expansions of CTG/CAG trinucleotide repeats in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U. S. A. 95:12438–12443.
  • Mirkin EV, Mirkin SM. 2007. Replication fork stalling at natural impediments. Microbiol. Mol. Biol. Rev. 71:13–35.
  • Mirkin SM. 2007. Expandable DNA repeats and human disease. Nature 447:932–940.
  • Mirkin SM, Smirnova EV. 2002. Positioned to expand. Nat. Genet. 31:5–6.
  • Murakami Y, et al. 1998. Promoter of mDMAHP/Six5: differential utilization of multiple transcription initiation sites and positive/negative regulatory elements. Hum. Mol. Genet. 7:2103–2112.
  • Nenguke T, et al. 2003. Candidate DNA replication initiation regions at human trinucleotide repeat disease loci. Hum. Mol. Genet. 12:1021–1028.
  • Pearson CE, Edamura KN, Cleary JD. 2005. Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet. 6:729–742.
  • Pearson CE, Wang YH, Griffith JD, Sinden RR. 1998. Structural analysis of slipped-strand DNA (S-DNA) formed in (CTG)n. (CAG)n repeats from the myotonic dystrophy locus. Nucleic Acids Res. 26:816–823.
  • Pelletier R, Krasilnikova MM, Samadashwily GM, Lahue R, Mirkin SM. 2003. Replication and expansion of trinucleotide repeats in yeast. Mol. Cell. Biol. 23:1349–1357.
  • Razidlo DF, Lahue RS. 2008. Mrc1, Tof1 and Csm3 inhibit CAG.CTG repeat instability by at least two mechanisms. DNA Repair 7:633–640.
  • Ritzi M, et al. 1998. Human minichromosome maintenance proteins and human origin recognition complex 2 protein on chromatin. J. Biol. Chem. 273:24543–24549.
  • Samadashwily GM, Raca G, Mirkin SM. 1997. Trinucleotide repeats affect DNA replication in vivo. Nat. Genet. 17:298–304.
  • Savouret C, Garcia-Cordier C, Megret J, Hte Riele Junien C, Gourdon G. 2004. MSH2-dependent germinal CTG repeat expansions are produced continuously in spermatogonia from DM1 transgenic mice. Mol. Cell. Biol. 24:629–637.
  • Savouret C, Junien C, Gourdon G. 2004. Analysis of CTG repeats using DM1 model mice. Methods Mol. Biol. 277:185–197.
  • Schaarschmidt D, Ladenburger EM, Keller C, Knippers R. 2002. Human Mcm proteins at a replication origin during the G1 to S phase transition. Nucleic Acids Res. 30:4176–4185.
  • Seznec H, et al. 2000. Transgenic mice carrying large human genomic sequences with expanded CTG repeat mimic closely the DM CTG repeat intergenerational and somatic instability. Hum. Mol. Genet. 9:1185–1194.
  • Shishkin AA, et al. 2009. Large-scale expansions of Friedreich's ataxia GAA repeats in yeast. Mol. Cell 35:82–92.
  • Sinden RR, Pytlos MJ, Potaman V. 2006. Mechanisms of DNA repeat expansion, p3–53. InFry M., Usdin K. (ed), Human nucleotide expansion disorders, vol XVII. Springer, Berlin, Germany.
  • Sinden RR, Pytlos-Sinden MJ, Potaman VN. 2007. Slipped strand DNA structures. Front. Biosci. 12:4788–4799.
  • Sundararajan R, Freudenreich CH. 2011. Expanded CAG/CTG repeat DNA induces a checkpoint response that impacts cell proliferation in Saccharomyces cerevisiae. PLoS Genet. 7:e1001339.
  • Sundararajan R, Gellon L, Zunder RM, Freudenreich CH. 2010. Double-strand break repair pathways protect against CAG/CTG repeat expansions, contractions and repeat-mediated chromosomal fragility in Saccharomyces cerevisiae. Genetics 184:65–77.
  • Takahashi T, Ohara E, Nishitani H, Masukata H. 2003. Multiple ORC-binding sites are required for efficient MCM loading and origin firing in fission yeast. EMBO J. 22:964–974.
  • Thomae AW, et al. 2008. Interaction between HMGA1a and the origin recognition complex creates site-specific replication origins. Proc. Natl. Acad. Sci. U. S. A. 105:1692–1697.
  • Trinh TQ, Sinden RR. 1991. Preferential DNA secondary structure mutagenesis in the lagging strand of replication in E. coli. Nature 352:544–547.
  • Voineagu I, Freudenreich CH, Mirkin SM. 2009. Checkpoint responses to unusual structures formed by DNA repeats. Mol. Carcinog. 48:309–318.
  • Voineagu I, Narayanan V, Lobachev KS, Mirkin SM. 2008. Replication stalling at unstable inverted repeats: interplay between DNA hairpins and fork stabilizing proteins. Proc. Natl. Acad. Sci. U. S. A. 105:9936–9941.
  • Voineagu I, Surka CF, Shishkin AA, Krasilnikova MM, Mirkin SM. 2009. Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility. Nat. Struct. Mol. Biol. 16:226–228.
  • Wu Y, Suhasini AN, Brosh RMJr. 2009. Welcome the family of FANCJ-like helicases to the block of genome stability maintenance proteins. Cell. Mol. Life Sci. 66:1209–1222.
  • Xu W, Aparicio JG, Aparicio OM, Tavare S. 2006. Genome-wide mapping of ORC and Mcm2p binding sites on tiling arrays and identification of essential ARS consensus sequences in S. cerevisiae. BMC Genomics 7:276.
  • Yang J, Freudenreich CH. 2007. Haploinsufficiency of yeast FEN1 causes instability of expanded CAG/CTG tracts in a length-dependent manner. Gene 393:110–115.
  • Yang Z, Lau R, Marcadier JL, Chitayat D, Pearson CE. 2003. Replication inhibitors modulate instability of an expanded trinucleotide repeat at the myotonic dystrophy type 1 disease locus in human cells. Am. J. Hum. Genet. 73:1092–1105.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.