3
Views
76
CrossRef citations to date
0
Altmetric
Research Article

Alternatively Spliced Forms in the Carboxy-Terminal Domain of the p53 Protein Regulate Its Ability to Promote Annealing of Complementary Single Strands of Nucleic Acids

, , , &
Pages 497-504 | Received 12 Jul 1994, Accepted 20 Oct 1994, Published online: 30 Mar 2023

REFERENCES

  • Bakalkin, G., T. Yakovleva, G. Selivanova, K. P. Magnusson, L. Szekzly, E. Kiseleva, G. Klein, L. Terenius, and K. G. Wiman. 1994. p53 binds single-stranded DNA ends and catalyzes DNA renaturation and strand transfer. Proc. Natl. Acad. Sci. USA 91:413–417.
  • Banks, L., G. Matlashewski, and L. Crawford. 1986. Isolation of human-p53-specific monoclonal antibodies and their use in the studies of human p53 expression. Eur. J. Biochem. 159:529–534.
  • Bargonetti, J., P. N. Friedman, S. E. Kern, B. Vogelstein, and C. Prives. 1991. Wild-type but not mutant p53 immunopurified proteins bind to sequences adjacent to the SV40 origin of replication. Cell 65:1083–1091.
  • Bargonetti, J., J. J. Manfredi, X. Chen, D. R. Marshak, and C. Prives. 1994. A proteolytic fragment from the central region of p53 has marked sequence-specific DNA binding activity when generated from wild-type but not from oncogenic mutant p53 protein. Genes Dev. 7:2565–2574.
  • Bischoff, J. R., P. N. Friedman, D. R. Marshak, C. Prives, and D. Beach. 1990. Human p53 is phosphorylated by p60-cdc2 and cyclin B-cdc2. Proc. Natl. Acad. Sci. USA 87:4766–4770.
  • Clarke, A. R., C. A. Purdie, D. J. Harrison, R. G. Morris, C. C. Bird, M. L. Hooper, and A. H. Wyllie. 1993. Thymocyte apoptosis induced by p53-dependent and independent pathways. Nature (London) 362:849–852.
  • Clarke, C. F., K. Cheng, A. B. Frey, R. Stein, P. W. Hinds, and A. J. Levine. 1988. Purification of complexes of nuclear oncogene p53 with rat and Esch-erichia coli heat shock proteins: in vitro dissociation of hsc70 and dnaK from murine p53 by ATP. Mol. Cell. Biol. 8:1206–1215.
  • El-Deiry, W. S., T. Tokino, V. E. Velculescu, D. B. Levy, R. Parsons, J. M. Trent, D. Lin, W. E. Mercer, K. W. Kinzler, and B. Vogelstein. 1993. WAR1, a potential mediator of p53 tumor suppression. Cell 75:817–825.
  • Farmer, G. E., J. Bargonetti, H. Zhu, P. Friedman, R. Prywes, and C. Prives. 1992. Wild-type p53 activates transcription in vitro. Nature (London) 358: 83–86.
  • Fields, S., and S. K. Jang. 1990. Presence of a potent transcription activating sequence in the p53 protein. Science 249:1046–1049.
  • Ginsberg, D., F. Mechta, M. Yaniv, and M. Chen. 1991. Wild-type p53 can down-modulate the activity of various promoters. Proc. Natl. Acad. Sci. USA 88:9979–9983.
  • Han, K. A., and M. F. Kulesz-Martin. 1992. Alternatively spliced p53 RNA in transformed and normal cells of different issue types. Nucleic Acids Res. 20:1979–1981.
  • Harlow, E., L. V. Crawford, D. C. Pim, and N. M. Williamson. 1981. Monoclonal antibodies specific for simian virus 40 tumor antigen. J. Virol. 39:861–869.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
  • Harper, J. W., G. R. Adami, N. Wei, D. Keyomarsi, and S. J. Elledge. 1993. The p21 cdk-interaction protein cip-1 is a potent inhibitor of G1 cyclin-dependent kinases. Cell 75:805–816.
  • Kastan, M. B., O. Onyekwere, D. Sidransky, B. Vogelstein, and R. W. Craig. 1991. Participation of p53 protein in the cellular response to DNA damage. Cancer Res. 51:6304–6311.
  • Kern, S., J. A. Pietenpol, S. Thiagalingam, A. Seymour, K. Kinsler, and B. Vogelstein. 1992. Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256:827–832.
  • Kulesz-Martin, M. F., B. Lisafeld, H. Huang, N. D. Kisiel, and L. Lee. 1994. Endogenous p53 protein generated from wild-type alternatively spliced p53 RNA in mouse epidermal cells. Mol. Cell. Biol. 14:1698–1708.
  • Lin, J., J. Chen, B. Elenbaas, and A. J. Levine. 1994. Several hydrophobic amino acids in the p53 N-terminal domain are required for transcriptional activation, binding to mdm-2 and the adenovirus 5 E1B 55kd protein. Genes Dev. 8:1235–1246.
  • Livingstone, L. R., A. White, J. Sprouse, E. Livanos, T. Jacks, and T. Tlsty. 1992. Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70:923–935.
  • Lowe, S. W., E. M. Schmitt, S. W. Smith, B. A. Osborne, and T. Jacks. 1993. P53 is required for radiation induced apoptosis in mouse thymocytes. Nature (London) 362:847–849.
  • Maltzman, W., and L. Czyzyk. 1984. UV irradiation stimulates levels of p53 cellular tumor antigen in nontransformed mouse cells. Mol. Cell. Biol. 4:1689–1694.
  • Martinez, J., I. Georgoff, J. Martinez, and A. J. Levine. 1991. Cellular localization and cell cycle regulation by a temperature sensitive p53 protein. Genes Dev. 5:151–159.
  • Michalovitz, D., O. Halevy, and M. Oren. 1990. Conditional inhibition of transformation and of cell proliferation by a temperature-sensitive mutant of p53. Cell 62:671–680.
  • Milner, J., and C. M. Sheldon. 1987. A new anti-p53 monoclonal antibody, previously reported to be directed against the large T antigen of simian virus 40. Oncogene 1:453–455.
  • Moll, U. M., G. Riou, and A. J. Levine. 1992. Two distinct mechanisms alter p53 in breast cancer: mutation and nuclear exclusion. Proc. Natl. Acad. Sci. USA 89:7262–7266.
  • Momand, J., G. P. Zambetti, D. C. Olson, D. George, and A. J. Levine. 1992. The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53 mediated transactivation. Cell 69:1237–1245.
  • Noda, A., Y. Ning, S. F. Venable, O. M. Pereira-Smith, and J. R. Smith. Exp. Cell Res., in press.
  • Oberosler, P., P. Hloch, U. Ramsperger, and H. Stahl. 1993. P53 catalyzed annealing of complementary single-stranded nucleic acids. EMBO J. 12: 2389–2396.
  • Pavletich, N. P., K. A. Chambers, and C. O. Pabo. 1994. The DNA binding domain of p53 contains the four conserved regions and the major mutation hotspots. Genes Dev. 7:2556–2564.
  • Raycroft, L., H. Wu, and G. Lozano. 1990. Transcriptional activation by wild-type but not transforming mutants of the p53 anti-oncogene. Science 249:1049–1051.
  • Seto, E., A. Usheva, G. P. Zambetti, J. Momand, N. Horikoshi, R. Wein-mann, A. J. Levine, and T. Shenk. 1992. Wild-type p53 binds to the TATA-binding protein and represses transcription. Proc. Natl. Acad. Sci. USA 89:12028–12032.
  • Shaulian, E., A. Zauberman, D. Ginsberg, and M. Oren. 1992. Identification of minimal transforming domain of p53: negative dominance through abrogation of sequence-specific DNA binding. Mol. Cell. Biol. 12:5581–5592.
  • Shaulsky, G., N. Goldfinger, A. Peled, and V. Rotter. 1991. Involvement of wild-type p53 protein in the cell cycle requires nuclear localization. Cell Growth Differ. 2:661–667.
  • Shaw, P., R. Bovey, S. Tardy, R. Sahli, B. Sordat, and J. Costa. 1992. Induction of apoptosis by wild-type p53 in a human colon tumor-derived cell line. Proc. Natl. Acad. Sci. USA 89:4495–4499.
  • Stürzbecher, H. W., R. Brain, C. Addison, K. Rudge, M. Remm, M. Grimaldi, E. Keenan, and J. R. Jenkins. 1992. A C-terminal alpha helix plus basic motif is the major structural determinant of p53 tetramerization. Oncogene 7:1513–1523.
  • Stürzbecher, H. W., T. Maimets, P. Chumakov, R. Brain, C. Addison, V. Simanis, K. Rudge, R. Philp, M. Grimaldi, W. Court, and J. R. Jenkins. 1990. p53 interacts with p34cdc2 in mammalian cells: implication for cell cycle control and oncogenesis. Oncogene 5:795–801.
  • Wang, Y., M. Reed, P. Wang, J. E. Stenger, G. Mayr, M. E. Anderson, J. F. Schwedes, and P. Tegtmeyer. 1994. p53 domains: identification and charac-terization of two autonomous DNA binding regions. Genes Dev. 7:2575–2586.
  • Wolf, D., N. Harris, N. Goldfinger, and V. Rotter. 1985. Isolation of a full-length mouse cDNA clone coding for an immunologically distinct p53 molecule. Mol. Cell. Biol. 5:127–132.
  • Wu, X., and A. J. Levine. 1994. p53 and E2F-1 cooperate to mediate apop-tosis. Proc. Natl. Acad. Sci. USA 91:3602–3606.
  • Yewdell, J., J. V. Gannon, and D. P. Lane. 1986. Monoclonal antibody analysis of p53 expression in normal and transformed cells. J. Virol. 59:444–452.
  • Yin, Y., M. A. Tainsky, F. Z. Bischoff, L. C. Strong, and G. M. Wahl. 1992. Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70:937–948.
  • Yonish-Rouach, E., D. Resnitzky, J. Lotem, L. Sachs, A. Kimchi, and M. Oren. 1991. Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature (London) 352:345–347.
  • Zambetti, G. P., D. Olson, M. Labow, and A. J. Levine. 1992. A mutant p53 protein is required for the maintenance of the transformed cell phenotype in p53 plus ras transformed cells. Proc. Natl. Acad. Sci. USA 89:3952–3956.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.