17
Views
115
CrossRef citations to date
0
Altmetric
Research Article

The Yeast Carboxyl-Terminal Repeat Domain Kinase CTDK-I Is a Divergent Cyclin–Cyclin-Dependent Kinase Complex

, , &
Pages 5716-5724 | Received 06 Apr 1995, Accepted 05 Jul 1995, Published online: 30 Mar 2023

REFERENCES

  • Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.
  • Andreadis, A., Y.-P. Hsu, G. B. Kohlhaw, and P. Schimmel. 1982. Nucleotide sequence of yeast LEU2 shows 59 noncoding region has sequences cognate to leucine. Cell 31:319–325.
  • Åström, S. U., U. von Pawel-Rammingen, and A. S. Byström. 1993. The yeast initiator tRNAMet can act as an elongator tRNAMet in vivo. J. Mol. Biol. 233:43–58.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 1994. Current protocols in molecular biology. John Wiley & Sons, Inc., New York.
  • Bartolomei, M. S., N. F. Halden, C. R. Cullen, and J. L. Corden. 1988. Genetic analysis of the repetitive carboxyl-terminal domain of the largest subunit of mouse RNA polymerase II. Mol. Cell. Biol. 8:330–339.
  • Bennetzen, J. L., and B. D. Hall. 1982. Codon selection in yeast. J. Biol. Chem. 257:3026–3031.
  • Bullock, W. O., J. M. Fernandez, and J. M. Short. 1987. XL-1 Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galac-tosidase selection. BioTechniques 4:376–379.
  • Cisek, L. J., and J. L. Corden. 1989. Phosphorylation of RNA polymerase by the murine homologue of the cell-cycle control protein cdc2. Nature (London) 339:679–684.
  • Cisek, L. J., and J. L. Corden. 1991. Purification of protein kinases that phosphorylate the repetitive carboxyl-terminal domain of eukaryotic RNA polymerase II. Methods Enzymol. 200:301–325.
  • Corden, J. L. 1990. Tails of RNA polymerase II. Trends Biochem. Sci. 15: 383–387.
  • Dahmus, M. E., and W. S. Dynan. 1992. Phosphorylation of RNA polymerase II as a transcriptional regulatory mechanism, p. 109–129. In K. Yamamoto, and S. McKnight (ed.), Transcriptional regulation. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Devereux, J., P. Haeberli, and O. Smithies. 1984. A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Res. 12:387–395.
  • Ducommun, B., P. Brambilla, and G. Draetta. 1991. Mutations at sites involved in Suc1 binding inactivate Cdc2. Mol. Cell. Biol. 11:6177–6184.
  • Eckhardt, A. E., C. S. Timpte, J. L. Abernethy, Y. Zhao, and R. L. Hill. 1991. Porcine submaxillary mucin contains a cysteine-rich, carboxyl-terminal domain in addition to a highly repetitive, glycosylated domain. J. Biol. Chem. 266:9678–9686.
  • Estruch, F., and M. Carlson. 1990. SNF6 encodes a nuclear protein that is required for expression of many genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2544–2553.
  • Feaver, W. J., J. Q. Svejstrup, N. L. Henry, and R. D. Kornberg. 1994. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79:1103–1109.
  • Gibson, T. J., J. D. Thompson, A. Blocker, and T. Kouzarides. 1994. Evidence for a protein domain superfamily shared by the cyclins, TFIIB and RB/p107. Nucleic Acids Res. 22:946–952.
  • Glotzer, M., A. W. Murray, and M. W. Kirschner. 1991. Cyclin is degraded by the ubiquitin pathway. Nature (London) 349:132–138.
  • Greenleaf, A. L. 1993. Positive patches and negative noodles: linking RNA processing to transcription? Trends Biochem. Sci. 18:117–119.
  • Guthrie, C., and J. Abelson. 1982. Organization and expression of tRNA genes in Saccharomyces cerevisiae, p. 487–528. In J. N. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccha-romyces: metabolism and gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Hadwiger, J. A., C. Wittenberg, M. D. Mendenhall, and S. I. Reed. 1989. The Saccharomyces cerevisiae CKS1 gene, a homolog of the Schizosaccharomyces pombe suc11 gene, encodes a subunit of the Cdc28 protein kinase complex. Mol. Cell. Biol. 9:2034–2041.
  • Hancock, K., and V. C. W. Tsang. 1983. India ink staining of proteins on nitrocellulose paper. Anal. Biochem. 133:157–162.
  • Harlow, E., and D. Lane. 1988. Antibodies: a laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Henikoff, S., and J. G. Henikoff. 1992. Amino acid substitution matrices from protein blocks. Proc. Natl. Acad. Sci. USA 89:10915–10919.
  • Herrmann, C. H., and A. P. Rice. 1995. Lentivirus Tat proteins specifically associate with a cellular protein kinase, TAK, that hyperphosphorylates the carboxyl-terminal domain of the large subunit of RNA polymerase II: candidate for a Tat cofactor. J. Virol. 69:1612–1620.
  • Hibbs, M. L., B. J. Classon, I. D. Walker, I. F. C. McKenzie, and P. M. Hogarth. 1988. The structure of the murine Fc receptor for IgG. J. Immunol. 140:544–550.
  • Holm, C., D. W. Meeks-Wagner, W. L. Fangman, and D. Botstein. 1986. A rapid, efficient method for isolating DNA from yeast. Gene 42:169–173.
  • Hunter, T., and J. Pines. 1994. Cyclins and cancer. II. Cyclin D and CDK inhibitors come of age. Cell 79:573–582.
  • Hyunh, T., R. A. Young, and R. W. Davis. 1984. Constructing and screening cDNA libraries in lgt10 and lgt11, p. 49–78. In D. Glover (ed.), DNA cloning techniques: a practical approach. IRL Press, Oxford.
  • Ingles, C. J., H. J. Himmelfarb, M. Shales, A. L. Greenleaf, and J. D. Friesen. 1984. Identification, molecular cloning, and mutagenesis of Saccharomyces cerevisiae RNA polymerase genes. Proc. Natl. Acad. Sci. USA 81:2157–2161.
  • Kaffman, A., I. Herskowitz, R. Tjian, and E. K. O'Shea. 1994. Phosphorylation of the transcription factor PHO4 by a cyclin-CDK complex, PHO80-PHO85. Science 263:1153–1156.
  • Kelly, J. L., A. L. Greenleaf, and I. R. Lehman. 1986. Isolation of the nuclear gene encoding a subunit of the yeast mitochondrial RNA polymerase. J. Biol. Chem. 261:10348–10351.
  • Kim, Y. J., S. Bjorklund, Y. Li, M. H. Sayre, and R. D. Kornberg. 1994. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell 77:599–608.
  • Koleske, A. J., and R. A. Young. 1994. An RNA polymerase II holoenzyme responsive to activators. Nature (London) 368:466–469.
  • Kunkel, T. A. 1985. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl. Acad. Sci. USA 82:488–492.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Lahue, E. E., A. V. Smith, and T. L. Orr-Weaver. 1991. A novel cyclin gene from Drosophila complements CLN function in yeast. Genes Dev. 5:2166–2175.
  • Lane, W. S., A. Galat, M. W. Harding, and S. L. Schreiber. 1991. Complete amino acid sequence of the FK506 and rapamycin binding protein, FKBP, isolated from calf thymus. J. Prot. Chem. 10:151–160.
  • Lee, J. M., and A. L. Greenleaf. 1989. A protein kinase that phosphorylates the C-terminal repeat domain of the largest subunit of RNA polymerase II. Proc. Natl. Acad. Sci. USA 86:3624–3628.
  • Lee, J. M., and A. L. Greenleaf. 1991. CTD kinase large subunit is encoded by CTK1, a gene required for normal growth of Saccharomyces cerevisiae. Gene Expr. 1:149–167.
  • Lees, E. M., and E. Harlow. 1993. Sequences within the conserved cyclin box of human cyclin A are sufficient for binding to and activation of cdc2 kinase. Mol. Cell. Biol. 13:1194–1201.
  • Leopold, P., and P. H. O'Farrell. 1991. An evolutionarily conserved cyclin homolog from Drosophila rescues yeast deficient in G1 cyclins. Cell 66:1207–1216.
  • Lew, D. J., V. Dulic, and S. I. Reed. 1991. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell 66:1197–1206.
  • Li, Y., and R. D. Kornberg. 1994. Interplay of positive and negative effectors in function of the C-terminal repeat domain of RNA polymerase II. Proc. Natl. Acad. Sci. USA 91:2362–2366.
  • Liao, S. M., and R. A. Young. Personal communication.
  • Liao, S.-M., J. Zhang, D. A. Jeffery, A. J. Koleske, C. M. Thompson, D. M. Chao, M. Viljoen, H. J. J. van Vuuren, and R. A. Young. 1995. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature (London) 374:193–196.
  • Lu, H., L. Zawel, L. Fisher, J. M. Egly, and D. Reinberg. 1992. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature (London) 358:641–645.
  • McKinney, J., and F. Cross. 1992. A switch-hitter at the start of the cell cycle. Curr. Biol. 2:421–423.
  • Messing, J., B. Gronenborn, B. Müller-Hill, and P. H. Hofschneider. 1977. Filamentous coliphage M13 as a cloning vehicle: insertion of a HindII fragment of the lac regulatory region in M13 replicative form in vitro. Proc. Natl. Acad. Sci. USA 74:3642–3646.
  • Nonet, M., D. Sweetser, and R. A. Young. 1987. Functional redundancy and structural polymorphism in the large subunit of RNA polymerase II. Cell 50: 909–915.
  • Nugent, J. H. A., C. E. Alfa, T. Young, and J. S. Hyams. 1991. Conserved structural motifs in cyclins identified by sequence analysis. J. Cell Sci. 99:669–674.
  • O'Brien, T., S. Hardin, A. Greenleaf, and J. T. Lis. 1994. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature (London) 370:75–77.
  • Parker, R. C., and B. Seed. 1980. Two-dimensional agarose gel electrophoresis ‘‘SeaPlaque’’ agarose dimension. Methods Enzymol. 65:358–363.
  • Robbins, A., W. S. Dynan, A. L. Greenleaf, and R. Tjian. 1984. Affinity-purified antibody as a probe of RNA polymerase II subunit structure. J. Mol. Appl. Genet. 2:343–353.
  • Rogers, S., R. Wells, and M. Rechsteiner. 1986. Amino acid sequences common to rapidly degraded proteins: the PEST hypothesis. Science 234: 364–369.
  • Rose, M., P. Grisafi, and D. Botstein. 1984. Structure and function of the yeast URA3 gene: expression in Escherichia coli. Gene 29:113–124.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Rothstein, R. J. 1983. One step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Roy, R., J. P. Adamczewski, T. Seroz, W. Vermeulen, J. Tassan, L. Schaeffer, E. A. Nigg, J. H. J. Hoeijmakers, and J. Egly. 1994. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79: 1093–1101.
  • Rüther, U., and B. Müller-Hill. 1983. Easy identification of cDNA clones. EMBO J. 2:1791–1794.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Short, J. M., J. M. Fernandez, J. A. Sorge, and A. Huse. 1988. lZAP: a bacteriophage l expression vector with in vivo excision properties. Nucleic Acids Res. 16:7583–7600.
  • Sikorski, R., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevi-siae. Genetics 122:19–27.
  • Struhl, K. 1985. Nucleotide sequence and transcriptional mapping of the yeast pet56-his3-ded1 gene region. Nucleic Acids Res. 13:8587–8601.
  • Tamura, K., Y. Kanaoka, S. Jinno, A. Nagata, Y. Ogiso, K. Shimizu, T. Hayakawa, H. Nojima, and H. Okayama. 1993. Cyclin G: a new mammalian cyclin with homology to fission yeast Cig1. Oncogene 8:2113–2118.
  • Weeks, J. R., D. E. Coulter, and A. L. Greenleaf. 1982. Immunological studies of RNA polymerase II using antibodies to subunits of Drosophila and wheat germ enzyme. J. Biol. Chem. 257:5884–5892.
  • Weeks, J. R., S. E. Hardin, J. Shen, J. M. Lee, and A. L. Greenleaf. 1993. Locus-specific variation in phosphorylation state of RNA polymerase II in vivo: correlations with gene activity and transcript processing. Genes Dev. 7:2329–2344.
  • Winter, E., and A. Varshavsky. 1989. A DNA binding protein that recognizes oligo(dA)-oligo(dT) tracts. EMBO J. 8:1867–1877.
  • Young, R. A. 1991. RNA polymerase II. Annu. Rev. Biochem. 60:689–715.
  • Zehring, W. A., J. M. Lee, J. R. Weeks, R. S. Jokerst, and A. L. Greenleaf. 1988. The C-terminal repeat domain of RNA polymerase II largest subunit is essential in vivo but is not required for accurate transcription initiation in vitro. Proc. Natl. Acad. Sci. USA 85:3698–3702.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.