16
Views
79
CrossRef citations to date
0
Altmetric
Research Article

3′-End-Forming Signals of Yeast mRNA

&
Pages 5983-5990 | Received 12 Jun 1995, Accepted 25 Aug 1995, Published online: 30 Mar 2023

REFERENCES

  • Abe, A., Y. Hiraoka, and T. Fukasawa. 1990. Signal sequence for generation of mRNA 39 end in the Saccharomyces cerevisiae GAL7 gene. EMBO J. 9:3691–3697.
  • Bennetzen, J. L., and B. D. Hall. 1982. The primary structure of the Sac- charomyces cerevisiae gene for alcohol dehydrogenase . J. Biol. Chem. 257: 3018–3025.
  • Brown, P. H., L. S. Tiley, and B. R. Cullen. 1991. Efficient polyadenylation within the human immunodeficiency virus type 1 long terminal repeat requires flanking U3-specific sequences. J. Virol. 65:3340–3343.
  • Butler, J. S., and T. Platt. 1988. RNA processing generates the mature 39 end of yeast CYC1 messenger RNA in vitro. Science 242:1270–1274.
  • Butler, J. S., P. P. Sadhale, and T. Platt. 1990. RNA processing in vitro produces mature 39 ends of a variety of Saccharomyces cerevisiae mRNAs. Mol. Cell. Biol. 10:2599–2605.
  • Carswell, S., and J. C. Alwine. 1989. Efficiency of utilization of the simian virus 40 late polyadenylation site: effects of upstream sequences. Mol. Cell. Biol. 9:4248–4258.
  • Chelly, J., D. Montarras, C. Pniset, Y. Berwald-Netter, and J. C. Kaplan. 1990. Quantitative estimation of minor mRNAs by cDNA-polymerase chain reaction. Eur. J. Biochem. 187:691–698.
  • DeZazzo, J. D., E. Falck-Pedersen, and M. J. Imperiale. 1991. Sequences regulating temporal poly(A) site switching in the adenovirus major late transcription unit. Mol. Cell. Biol. 11:5977–5984.
  • DeZazzo, J. D., and M. J. Imperiale. 1989. Sequences upstream of AAUAAA influence poly(A) site selection in a complex transcription unit. Mol. Cell. Biol. 9:4951–4961.
  • Egli, C. M., C. Springer, and G. H. Braus. 1995. A complex unidirectional signal element mediates GCN4 mRNA 39 end formation in Saccharomyces cerevisiae. Mol. Cell. Biol. 15:2466–2473.
  • Gilmartin, G. M., E. S. Fleming, and J. Oetjen. 1992. Activation of HIV-1 39 processing in vitro requires both an upstream element and TAR. EMBO J. 11:4419–4428.
  • Gilmartin, G. M., E. S. Fleming, J. Oetjen, and B. R. Graveley. 1995. CPSF recognition of an HIV-1 mRNA 39-processing enhancer: multiple sequence contacts involved in poly(A) site definition. Genes Dev. 9:72–83.
  • Guo, Z., P. Russo, D.-F. Yun, J. S. Butler, and F. Sherman. 1995. Redundant 39 end-forming signals for the yeast CYC1 mRNA. Proc. Natl. Acad. Sci. USA 92:4211–4214.
  • Heidmann, S., B. Obermaier, K. Vogel, and H. Domdey. 1992. Identification of pre-mRNA polyadenylation sites in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:4215–4229.
  • Heidmann, S., C. Schindewolf, G. Stumpf, and H. Domdey. 1994. Flexibility and interchangeability of polyadenylation signals in Saccharomyces cerevi-siae. Mol. Cell. Biol. 14:4633–4642.
  • Henikoff, S., and E. H. Cohen. 1984. Sequences responsible for transcription termination on a gene segment in Saccharomyces cerevisiae. Mol. Cell. Biol. 4:1515–1520.
  • Henikoff, S., J. D. Kelly, and E. H. Cohen. 1983. Transcription terminates in yeast distal to a control sequence. Cell 33:607–614.
  • Hyman, L. E., and C. L. Moore. 1993. Termination and pausing of RNA polymerase II downstream of yeast polyadenylation sites. Mol. Cell. Biol. 13:5159–5167.
  • Hyman, L. E., S. H. Seiler, J. Whoiskey, and C. L. Moore. 1991. Point mutations upstream of the yeast ADH2 poly(A) site significantly reduce the efficiency of 39 end formation. Mol. Cell. Biol. 11:2004–2012.
  • Irniger, S., and G. H. Braus. 1994. Saturation mutagenesis of a polyadenylation signal reveals a hexanucleotide element essential for mRNA 39 end formation in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 91:257–261.
  • Irniger, S., C. M. Egli, and G. H. Braus. 1991. Different classes of polyad-enylation sites in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11: 3060–3069.
  • Irniger, S., H. Sanfaçon, C. M. Egli, and G. H. Braus. 1992. Different sequence elements are required for function of the cauliflower mosaic virus polyadenylation site in Saccharomyces cerevisiae compared with in plants. Mol. Cell. Biol. 12:2322–2330.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zakoar. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Li, W.-Z., and F. Sherman. 1991. Two types of TATA elements for the CYC1 gene of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 11:666–676.
  • Osborne, B. I., and L. Guarente. 1988. Transcription by RNA polymerase II induces changes of DNA topology in yeast. Genes Dev. 2:766–772.
  • Osborne, B. I., and L. Guarente. 1989. Mutational analysis of a yeast transcriptional terminator. Proc. Natl. Acad. Sci. USA 86:4097–4101.
  • Peterson, J. A., and A. M. Myers. 1993. Functional analysis of mRNA 39 end formation signals in the convergent and overlapping transcription units of the S. cerevisiae genes RHO1 and MRP2. Nucleic Acids Res. 21:5500–5508.
  • Preker, P. J., J. Lingner, L. Minvielle-Sebastia, and W. Keller. 1995. The FIP1 gene encodes a component of the yeast pre-mRNA polyadenylation factor that directly interacts with poly(A) polymerase. Cell 81:379–389.
  • Russnak, R., and D. Ganem. 1990. Sequences 59 to the polyadenylation signal mediate differential poly(A) site use in hepatitis B viruses. Genes Dev. 4:764–776.
  • Russo, P. 1995. Saccharomyces cerevisiae mRNA 39 end forming signals are also involved in transcription termination. Yeast 11:447–453.
  • Russo, P., W.-Z. Li, Z. Guo, and F. Sherman. 1993. Signals that produce 39 termini in CYC1 mRNA of the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 13:7836–7849.
  • Russo, P., W.-Z. Li, D. M. Hampsey, K. S. Zaret, and F. Sherman. 1991. Distinct cis-acting signals enhance 39 endpoint formation of CYC1 mRNA in the yeast Saccharomyces cerevisiae. EMBO J. 10:563–571.
  • Russo, P., and F. Sherman. 1989. Transcription terminates near the poly(A) site in the CYC1 gene of the yeast Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 86:8348–8352.
  • Sadhale, P. P., R. Sapolsky, R. W. Davis, J. S. Butler, and T. Platt. 1991. Polymerase chain reaction mapping of yeast GAL7 mRNA polyadenylation sites demonstrates that 39 end processing in vitro faithfully reproduces the 39 ends observed in vivo. Nucleic Acids Res. 19:3683–3688.
  • Sanfacon, H., P. Brodmann, and T. Hohn. 1991. A dissection of the cauliflower mosaic virus polyadenylation signal. Genes Dev. 5:141–149.
  • Schek, N., C. Cooke, and J. C. Alwine. 1992. Definition of the upstream efficiency element of the simian virus 40 late polyadenylation signal by using in vitro analyses. Mol. Cell. Biol. 12:5386–5393.
  • Sheets, M. D., S. C. Ogg, and M. P. Wickens. 1990. Point mutations in AAU AAA and the poly(A) addition site: effects on the accuracy and efficiency of cleavage and polyadenylation in vitro. Nucleic Acids Res. 18:5799–5805.
  • Valsamakis, A., N. Schek, and J. C. Alwine. 1992. Elements upstream of the AAUAAA within the human immunodeficiency virus polyadenylation signal are required for efficient polyadenylation in vitro. Mol. Cell. Biol. 12:3699–3705.
  • Valsamakis, A., S. Zeichner, S. Carswell, and J. C. Alwine. 1991. The human immunodeficiency virus type 1 polyadenylation signal: a 39 long terminal repeat element upstream of the AAUAAA necessary for efficient polyade-nylation. Proc. Natl. Acad. Sci. USA 88:2108–2112.
  • Wahle, E., and W. Keller. 1992. The biochemistry of 39-end cleavage and polyadenylation of messenger RNA precursors. Annu. Rev. Biochem. 61: 419–440.
  • Yu, K., and R. T. Elder. 1989. Some of the signals for 39-end formation in transcription of the Saccharomyces cerevisiae Ty-D15 element are immediately downstream of the initiation site. Mol. Cell. Biol. 9:2431–2444.
  • Zaret, K. S., and F. Sherman. 1982. DNA sequences required for efficient transcription termination in yeast. Cell 28:563–573.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.