4
Views
56
CrossRef citations to date
0
Altmetric
Research Article

Rapid Degradation of AU-Rich Element (ARE) mRNAs Is Activated by Ribosome Transit and Blocked by Secondary Structure at Any Position 5′ to the ARE

, &
Pages 6331-6340 | Received 27 Apr 1995, Accepted 09 Aug 1995, Published online: 30 Mar 2023

REFERENCES

  • Aharon, T., and R. J. Schneider. 1993. Selective destabilization of short-lived mRNAs with the granulocyte-macrophage colony-stimulating factor AU-rich 39 noncoding region is mediated by a cotranslational mechanism. Mol. Cell. Biol. 13:1971–1980.
  • Beelman, C. A., and R. Parker. 1994. Differential effects of translational inhibition in cis and in trans on the decay of the unstable yeast MFA2 mRNA. J. Biol. Chem. 269:9687–9692.
  • Bernstein, P., D. Herrick, R. D. Prokipcak, and J. Ross. 1992. Control of c-myc mRNA half-life in vitro by a protein capable of binding to a coding region stability determinant. Genes Dev. 6:642–654.
  • Binder, R., J. A. Horowitz, J. P. Basilion, D. M. Koeller, R. D. Klausner, and J. B. Harford. 1994. Evidence that the pathway of transferrin receptor mRNA degradation involves an endonucleolytic cleavage within the 39 UTR and does not involve poly(A) tail shortening. EMBO J. 13:1969–1980.
  • Bohjanen, P. R., B. Petryniak, C. H. June, C. B. Thompson, and T. Lindstein. 1992. AU RNA binding factors differ in their binding specificities and affinities. J. Biol. Chem. 267:6302–6309.
  • Bohjanen, P. R., B. Petryniak, C. H. June, C. B. Thompson, and T. Lindsten. 1991. An inducible cytoplasmic factor (AU-B) binds selectively to AUUUA multimers in the 39 untranslated region of lymphokine mRNA. Mol. Cell. Biol. 11:3288–3295.
  • Brewer, G., and J. Ross. 1988. Poly(A) shortening and degradation of the 39 A1U-rich sequences of human c-myc mRNA in a cell-free system. Mol. Cell. Biol. 8:1697–1708.
  • Brewer, G., and J. Ross. 1989. Regulation of c-myc mRNA degradation in vitro by a labile destabilizer with an essential nucleic acid component. Mol. Cell. Biol. 9:1996–2006.
  • Caponigro, G., D. Muhlrad, and R. Parker. 1993. A small segment of the MATα1 transcript promotes mRNA decay in Saccharaomyces cerevisiae: a stimulatory role for rare codons. Mol. Cell. Biol. 13:5141–5148.
  • Chen, C.-Y. A., T.-M. Chen, and A.-B. Shyu. 1994. Interplay of two functionally and structurally distinct domains of the c-fos AU-rich element specifies its mRNA-destabilizing function. Mol. Cell. Biol. 14:416–426.
  • Chen, C.-Y. A., and A.-B. Shyu. 1994. Selective degradation of early-response-gene mRNAs: functional analyses of sequence features of the AU-rich elements. Mol. Cell. Biol. 14:8471–8482.
  • Decker, C. J., and R. Parker. 1993. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7:1632–1643.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Freier, S. M., R. Kierzek, J. A. Jaeger, N. Sugimoto, M. H. Caruthers, T. Neilson, and D. H. Turner. 1986. Improved free-energy parameters for predictions of RNA duplex stability. Proc. Natl. Acad. Sci. USA 83:9373–9377.
  • Gillis, P., and J. S. Malter. 1991. The adenosine-uridine binding factor recognizes the AU-rich elements of cytokine, lymphokine and oncogene mRNAs. J. Biol. Chem. 266:3172–3177.
  • Graves, R. A., N. B. Pandey, N. Chodchoy, and W. F. Marzluff. 1987. Translation is required for regulation of histone mRNA degradation. Cell 48:615–626.
  • Hagan, K. W., M. J. Ruiz-Echevarria, Y. Quan, and S. W. Peltz. 1995. Characterization of cis-acting sequences and decay intermediates involved in nonsense-mediated mRNA turnover. Mol. Cell. Biol. 15:809–823.
  • Hamilton, B. J., E. Nagy, J. S. Malter, B. A. Arrick, and W. F. C. Rigby. 1993. Association of heterogeneous nuclear ribonucleoprotein A1 and C proteins with reiterated AUUUA sequences. J. Biol. Chem. 268:8881–8887.
  • Hershey, J. W. B. 1991. Translational control in mammalian cells. Annu. Rev. Biochem. 60:717–755.
  • Iwai, Y., M. Bickel, D. H. Luznik, and R. B. Cohen. 1991. Identification of sequences within the murine granulocyte-macrophage colony-stimulating factor mRNA 39-untranslated region that mediate mRNA stabilization induced by mitogen treatment of EL-4 thymoma cells. J. Biol. Chem. 266: 17959–17965.
  • Jones, T. R., and M. D. Cole. 1987. Rapid cytoplasmic turnover of c-myc mRNA: requirement of the 39 untranslated sequences. Mol. Cell. Biol. 7:4513–4521.
  • Katz, D. A., N. G. Theodorakis, D. W. Cleveland, T. Lindstein, and C. B. Thompson. 1994. AU-A, an RNA-binding activity distinct from hnRNP A1, is selective for AUUUA repeats and shuttles between the nucleus and the cytoplasm. Nucleic Acids Res. 22:238–246.
  • Kaufman, R. J., P. Murtha, and M. V. Davies. 1987. Translational efficiency of polycistronic mRNAs and their utilization to express heterologous genes in mammalian cells. EMBO J. 6:187–193.
  • Kozak, M. 1980. Influence of mRNA secondary structure on binding and migration of 40S ribosomal subunits. Cell 19:79–80.
  • Kozak, M. 1986. Bifunctional messenger RNAs in eukaryotes. Cell 47:481–483.
  • Kozak, M. 1986. Influence of mRNA secondary structure on initiation by eukaryotic ribosomes. Proc. Natl. Acad. Sci. USA 83:2850–2854.
  • Kozak, M. 1987. Effects of intercistronic length on the efficiency of reinitiation by eukaryotic ribosomes. Mol. Cell. Biol. 7:3438–3445.
  • Kozak, M. 1989. The scanning model for translation: an update. J. Cell Biol. 108:229–241.
  • Kozak, M. 1989. Circumstances and mechanisms of inhibition of translation by secondary structure in eukaryotic mRNAs. Mol. Cell. Biol. 9:5134–5142.
  • Lagnado, C. A., C. Y. Brown, and G. J. Goodall. 1994. AUUUA is not sufficient to promote poly(A) shortening and degradation of an mRNA: the functional sequence within AU-rich elements may be UUAUUUA(U/A)(U/A). Mol. Cell. Biol. 14:7984–7995.
  • Laird-Offringa, I. A., P. Elfferich, and A. J. Van der Eb. 1991. Rapid c-myc mRNA degradation does not require (A1U) rich sequences or complete translation of the mRNA. Nucleic Acids Res. 19:2387–2393.
  • Lieberman, A. P., P. M. Pitha, and M. L. Shin. 1992. Poly(A) removal is the kinase-regulated step in tumor necrosis factor mRNA decay. J. Biol. Chem. 267:2123–2126.
  • Mertz, J. E., A. Murphy, and A. Barkan. 1983. Mutants deleted in the agnogene of simian virus 40 define a new complementation group. J. Virol. 45:36–46.
  • Muhlrad, D., C. J. Decker, and R. Parker. 1995. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell. Biol. 15:2145–2156.
  • Parker, R., and A. Jacobsen. 1990. Translation and a 42-nucleotide segment within the mRNA encoded by the yeast MATa1 gene are involved in promoting rapid mRNA decay. Proc. Natl. Acad. Sci. USA 87:2780–2784.
  • Peabody, D., and P. Berg. 1986. Termination-reinitiation occurs in the translation of mammalian cell mRNAs. Mol. Cell. Biol. 6:2695–2703.
  • Pelletier, J., and N. Sonenberg. 1985. Insertion mutagenesis to increase secondary structure within the 59 noncoding region of a eukaryotic mRNA reduces translational efficiency. Cell 40:515–526.
  • Peltz, S. W., J. L. Donahue, and A. Jacobson. 1992. A mutation in the tRNA nucleotidyltransferase gene promotes stabilization of mRNAs in Saccharo-myces cerevisiae. Mol. Cell. Biol. 12:5778–5784.
  • Peltz, S. W., F. He, E. Welch, and A. Jacobson. 1994. Nonsense-mediated mRNA decay in yeast. Prog. Nucleic Acids Res. Mol. Biol. 47:271–298.
  • Peltz, S. W., and A. Jacobson. 1992. mRNA stability: in trans-it. Curr. Opin. Cell Biol. 4:979–983.
  • Rabbitts, P. H., A. Forster, M. A. Stinson, and T. H. Rabbitts. 1985. Truncation of exon 1 from the c-myc gene results in prolonged c-myc mRNA stability. EMBO J. 4:3727–3733.
  • Rajagopalan, L. E., and J. S. Malter. 1994. Modulation of granulocyte-macrophage colony-stimulating factor mRNA stability in vitro by the aden-osine-uridine binding factor. J. Biol. Chem. 269:23882–23888.
  • Sachs, A. B. 1993. Messenger RNA degradation in eukaryotes. Cell 74:413–421.
  • Sagliocco, F. A., D. Zhu, M. R. V. Laso, J. E. E. McCarthy, M. F. Tuite, and A. J. P. Brown. 1994. Rapid mRNA degradation in yeast can proceed independently of translational elongation. J. Biol. Chem. 269:18630–18637.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Savant-Bhonsale, S., and D. W. Cleveland. 1992. Evidence for instability of mRNAs containing AUUUA motifs mediated through translation-dependent assembly of a .20S degradation complex. Genes Dev. 6:1927–1939.
  • Schiavi, S. C., C. L. Wellington, A.-B. Shyu, C.-Y. A. Chen, M. E. Greenberg, and J. G. Belasco. 1994. Multiple elements in the c-fos protein-coding region facilitate mRNA deadenylation and decay by a mechanism coupled to translation. J. Biol. Chem. 269:3441–3448.
  • Shaw, G., and R. Kamen. 1986. A conserved AU sequence from the 39 untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667.
  • Shyu, A.-B., J. G. Belasco, and M. E. Greenberg. 1991. Two distinct desta-bilizing elements in the c-fos message trigger deadenylation as a first step in mRNA decay. Genes Dev. 5:221–231.
  • Shyu, A.-B., M. E. Greenberg, and J. G. Belasco. 1989. The c-fos transcript is targeted for rapid mRNA decay by two distinct mRNA degradation pathways. Genes Dev. 3:60–72.
  • Stoekle, M. Y., and L. Guan. 1993. High-resolution analysis of gro α poly(A) shortening: regulation by interleukin-1β. Nucleic Acids Res. 21:1613–1617.
  • Theodorakis, N. G., and D. W. Cleveland. 1992. Physical evidence for co-translational regulation of β-tubulin mRNA degradation. Mol. Cell. Biol. 12:791–799.
  • Vakalopoulou, E., J. Schaack, and T. Shenk. 1991. A 32-kilodalton protein binds to AU-rich domains in the 39 untranslated regions of rapidly degraded mRNAs. Mol. Cell. Biol. 11:3355–3364.
  • Wellington, C. L., M. E. Greenberg, and J. G. Belasco. 1993. The destabi-lizing elements in the coding region of c-fos mRNA are recognized as RNA. Mol. Cell. Biol. 13:5034–5042.
  • Whittemore, L.-A., and T. Maniatis. 1990. Postinduction turnoff of beta interferon gene expression. Mol. Cell. Biol. 10:1329–1337.
  • Wilson, T., and R. Treisman. 1988. Removal of poly(A) and consequent degradation of c-fos mRNA facilitated by 39 AU-rich sequences. Nature (London) 336:396–399.
  • Winstall, E., M. Gamache, and V. Raymond. 1995. Rapid mRNA degradation mediated by the c-fos 39 AU-rich element and that mediated by the granulocyte-macrophage colony-stimulating factor 39 AU-rich element occur through similar polysome-associated mechanisms. Mol. Cell. Biol. 15:3796–3804.
  • Wodner-Filipowicz, A., and C. Moroni. 1990. Regulation of interleukin 3 mRNA expression in mast cells occurs at the posttranscriptional level and is mediated by calcium ions. Proc. Natl. Acad. Sci. USA 87:777–781.
  • Yen, T. J., P. S. Machlin, and D. W. Cleveland. 1988. Autoregulated instability of β-tubulin mRNAs by recognition of the nascent NH2-terminus of B-tubulin. Nature (London) 334:580–584.
  • You, Y., C.-Y. A. Chen, and A.-B. Shyu. 1992. U-rich sequence binding proteins (URBPs) interacting with a 20-nucleotide U-rich sequence in the 39 untranslated region of c-fos mRNA may be involved in the first step of c-fos mRNA degradation. Mol. Cell. Biol. 12:2931–2940.
  • Zhang, S., M. J. Ruiz-Echevarria, Y. Quan, and S. W. Peltz. 1995. Identifi-cation and characterization of a sequence motif involved in nonsense-mediated mRNA decay. Mol. Cell. Biol. 15:2231–2244.
  • Zhang, W., B. J. Wagner, K. Ehrenman, A. W. Schaefer, C. T. DeMaria, D. Crater, K. DeHaven, L. Long, and G. Brewer. 1993. Purification, characterization, and cDNA cloning of an AU-rich element RNA-binding protein, AUF1. Mol Cell. Biol. 13:7652–7665.
  • Zubiaga, A. M., J. G. Belasco, and M. E. Greenberg. 1995. The nonamer UUAUUUAUU is the key AU-rich sequence motif that mediates mRNA degradation. Mol. Cell. Biol. 15:2219–2230.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.