39
Views
530
CrossRef citations to date
0
Altmetric
Research Article

Activation of Rac1, RhoA, and Mitogen-Activated Protein Kinases Is Required for Ras Transformation

, , , &
Pages 6443-6453 | Received 16 May 1995, Accepted 17 Jul 1995, Published online: 30 Mar 2023

REFERENCES

  • Albright, C. F., B. W. Giddings, J. Liu, M. Vito, and R. A. Weinberg. 1993. Characterization of a guanine nucleotide dissociation stimulator for a ras-related GTPase. EMBO J. 12:339–347.
  • Avraham, H., and R. A. Weinberg. 1989. Characterization and expression of the human rhoH12 gene product. Mol. Cell. Biol. 9:2058–2066.
  • Boguski, M. S., and F. McCormick. 1993. Proteins regulating Ras and its relatives. Nature (London) 366:643–654.
  • Bourne, H. R., D. A. Sanders, and F. McCormick. 1990. The GTPase super-family: a conserved switch for diverse cell functions. Nature (London) 348: 125–132.
  • Brtva, T. R., J. K. Drugan, S. Ghosh, R. S. Terrell, S. Campbell-Burk, R. M. Bell, and C. J. Der. 1995. Two distinct Raf domains mediate interaction with Ras. J. Biol. Chem. 270:9809–9812.
  • Bruder, J. T., G. Heidecker, and U. R. Rapp. 1992. Serum-, TPA-, and Ras-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. Genes Dev. 6:545–556.
  • Chang, E. C., M. Barr, Y. Wang, V. Jung, H.-P. Xu, and M. H. Wigler. 1994. Cooperative interaction of S. pombe proteins required for mating and morphogenesis. Cell 79:131–141.
  • Chrzanowska-Wodnicka, M., and K. Burridge. 1992. Rho, rac and the actin cytoskeleton. Bioessays 14:777–778.
  • Clark, G. J., A. D. Cox, S. M. Graham, and C. J. Der. 1995. In vitro and in vivo assays for Ras transformation. Methods Enzymol. 255:395–412.
  • Cowley, S., H. Paterson, P. Kemp, and C. J. Marshall. 1994. Activation of MAP kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH 3T3 cells. Cell 77:841–852.
  • Cox, A. D., T. R. Brtva, D. G. Lowe, and C. J. Der. 1994. R-Ras induces malignant, but not morphologic, transformation of NIH3T3 cells. Oncogene 9:3281–3288.
  • Der, C. J., T. Finkel, and G. M. Cooper. 1986. Biological and biochemical properties of human rasH genes mutated at codon 61. Cell 44:167–176.
  • Egan, S. E., and R. A. Weinberg. 1993. The pathway to signal achievement. Nature (London) 365:781–783.
  • Fabian, J. R., I. O. Daar, and D. K. Morrison. 1993. Critical tyrosine residues regulate the enzymatic and biological activity of Raf-1 kinase. Mol. Cell. Biol. 13:7170–7179.
  • Feig, L. A., and G. M. Cooper. 1988. Inhibition of NIH 3T3 cell proliferation by a mutant ras protein with preferential affinity for GDP. Mol. Cell. Biol. 8:3235–3243.
  • Goldschmidt-Clermont, P. J., M. E. Mendelsohn, and J. B. Gibbs. 1992. Rac and rho in control. Curr. Opin. Cell Biol. 2:669–671.
  • Graham, S. M., A. D. Cox, G. Drivas, M. R. Rush, P. D'Eustachio, and C. J. Der. 1994. Aberrant function of the Ras-related TC21/R-Ras2 protein triggers malignant transformation. Mol. Cell. Biol. 14:4108–4115.
  • Hall, A. 1992. Ras-related GTPases and the cytoskeleton. Mol. Biol. Cell 3: 475–479.
  • Hart, M. J., A. Eva, T. Evans, S. A. Aaronson, and R. A. Cerione. 1991. Catalysis of guanine nucleotide exchange on the CDC42Hs protein by the dbl oncogene product. Nature (London) 354:311–314.
  • Hart, M. J., A. Eva, D. Zangrilli, S. A. Aaronson, T. Evans, R. A. Cerione, and Y. Zheng. 1994. Cellular transformation and guanine nucleotide exchange activity are catalyzed by a common domain on the dbl oncogene product. J. Biol. Chem. 269:62–65.
  • Hauser, C. A., C. J. Der, and A. D. Cox. 1994. Transcriptional activation analysis of oncogene function. Methods Enzymol. 238:271–276.
  • Hofer, F., S. Fields, C. Schneider, and G. S. Martin. 1994. Activated Ras interacts with the Ral guanine nucleotide dissociation stimulator. Proc. Natl. Acad. Sci. USA 91:11089–11093.
  • Khosravi-Far, R., M. Chrzanowska-Wodnicka, P. A. Solski, A. Eva, K. Burridge, and C. J. Der. 1994. Dbl and Vav mediate transformation via mitogen-activated protein kinase pathways that are distinct from those activated by oncogenic Ras. Mol. Cell. Biol. 14:6848–6857.
  • Khosravi-Far, R., G. J. Clark, K. Abe, A. D. Cox, T. McLain, R. J. Lutz, M. Sinensky, and C. J. Der. 1992. Ras (CXXX) and rab (CC/CXC) prenylation signal sequences are unique and functionally distinct. J. Biol. Chem. 267: 24363–24368.
  • Khosravi-Far, R., and C. J. Der. 1994. The Ras signal transduction pathway. Cancer Metastasis Rev. 13:67–89.
  • Khosravi-Far, R., P. A. Solski, M. White, M. Wigler, and C. J. Der. Unpublished results.
  • Kikuchi, A., S. D. Demo, Z. Ye, Y. Chen, and L. T. Williams. 1994. ralGDS family members interact with the effector loop of ras p21. Mol. Cell. Biol. 14: 7483–7491.
  • Kolch, W., G. Heidecker, P. Lloyd, and U. R. Rapp. 1991. Raf-1 protein kinase is required for growth of induced NIH/3T3 cells. Nature (London) 349:426–428.
  • Kumagai, N., N. Morii, K. Fujisawa, Y. Nemoto, and S. Narumiya. 1993. ADP-ribosylation of rho p21 inhibits lysophosphatidic acid-induced protein tyrosine phosphorylation and phosphatidylinositol 3-kinase activation in cultured Swiss 3T3 cells. J. Biol. Chem. 268:24535–24538.
  • Leevers, S. J., and C. J. Marshall. 1992. MAP kinase regulation—the oncogene connection. Trends Cell Biol. 2:283–286.
  • Mansour, S. J., W. T. Matten, A. S. Hermann, J. M. Candia, S. Rong, K. Fukasawa, G. F. Vande Woude, and N. G. Ahn. 1994. Transformation of mammalian cells by constitutively active MAP kinase kinase. Science 265: 966–970.
  • McGlade, J., B. Brunkhorst, D. Anderson, G. Mbamalu, J. Settleman, S. Dedhar, M. Rozakis-Adcock, L. B. Chen, and T. Pawson. 1993. The N-terminal region of GAP regulates cytoskeletal structure and cell adhesion. EMBO J. 12:3073–3081.
  • Moran, M. F., P. Polakis, F. McCormick, T. Pawson, and C. Ellis. 1991. Protein-tyrosine kinases regulate the phosphorylation, protein interactions, subcellular distribution, and activity of p21ras GTPase-activating protein. Mol. Cell. Biol. 11:1804–1812.
  • Pagès, G., P. Lenormand, G. L'Allemain, J.-C. Chambard, S. Meloche, and J. Pouysségur. 1993. Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proc. Natl. Acad. Sci. USA 90:8319–8323.
  • Perona, R., P. Esteve, B. Jiménez, R. P. Ballestero, S. Ramón y Cajal, and J. C. Lacal. 1993. Tumorigenic activity of rho genes from Aplysia californica. Oncogene 8:1285–1292.
  • Prendergast, G. C., and J. B. Gibbs. 1993. Pathways of Ras function: connections to the actin cytoskeleton. Adv. Cancer Res. 62:19–63.
  • Quilliam, L. A., R. Khosravi-Far, S. Y. Huff, and C. J. Der. 1995. Activators of Ras superfamily proteins. Bioessays 17:1–10.
  • Ridley, A. J., and A. Hall. 1992. The small GTP-binding protein rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70:389–399.
  • Ridley, A. J., H. F. Paterson, C. L. Johnston, D. Diekmann, and A. Hall. 1992. The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410.
  • Robbins, D. J., E. Zhen, H. Owaki, C. A. Vanderbilt, D. Ebert, T. D. Geppert, and M. H. Cobb. 1993. Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J. Biol. Chem. 268:5097–5106.
  • Roberts, T. M. 1992. A signal chain of events. Nature (London) 360:534–535.
  • Rodriguez-Viciana, P., P. H. Warne, R. Dhand, B. Vanhaesebroeck, I. Gout, M. J. Fry, M. D. Waterfield, and J. Downward. 1994. Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature (London) 370:527–532.
  • Self, A. J., H. F. Paterson, and A. Hall. 1993. Different structural organization of Ras and Rho effector domains. Oncogene 8:655–661.
  • Settleman, J., V. Narasimhan, L. C. Foster, and R. A. Weinberg. 1992. Molecular cloning of cDNAs encoding the GAP-associated protein p190: implications for a signaling pathway from ras to the nucleus. Cell 69:539–549.
  • Spaargaren, M., and J. R. Bischoff. 1994. Identification of the guanine nucleotide dissociation stimulator for Ral as a putative effector molecule of R-ras, H-ras, K-ras and Rap. Proc. Natl. Acad. Sci. USA 91:12609–12613.
  • Troppmair, J., J. T. Bruder, H. Munoz, P. A. Lloyd, J. Kyriakis, P. Banerjee, J. Avruch, and U. R. Rapp. 1994. Mitogen-activated protein kinase/extracellular signal-regulated protein kinase activation by oncogenes, serum, and 12-O-tetradecanoylphorbol-13-acetate requires Raf and is necessary for transformation. J. Biol. Chem. 269:7030–7035.
  • Westwick, J. K., A. D. Cox, C. J. Der, M. H. Cobb, M. Hibi, M. Karin, and D. A. Brenner. 1994. Oncogenic Ras activates c-Jun via a separate pathway from the activation of extracellular-signal regulated kinases. Proc. Natl. Acad. Sci. USA 91:6030–6034.
  • White, M. A., C. Nicolette, A. Minden, A. Polverino, L. Van Aelst, M. Karin, and M. H. Wigler. 1995. Multiple ras functions can contribute to mammalian cell transformation. Cell 80:533–541.
  • Zheng, Y., S. Bagrodia, and R. A. Cerione. 1994. Activation of phosphoi-nositide 3-kinase activity by Cdc42Hs binding to p85. J. Biol. Chem. 269: 18727–18730.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.