2
Views
40
CrossRef citations to date
0
Altmetric
Research Article

Effects of Mutations in the Saccharomyces cerevisiae RNA14, RNA15, and PAP1 Genes on Polyadenylation In Vivo

&
Pages 6979-6986 | Received 19 Jul 1995, Accepted 15 Sep 1995, Published online: 30 Mar 2023

REFERENCES

  • Beelman, C. A., and R. Parker. 1994. Differential effects of translational inhibition in cis and in trans on the decay of the unstable yeast MFA2 mRNA. J. Biol. Chem. 269:9687–9692.
  • Beelman, C. A., and R. Parker. 1995. Degradation of mRNA in eukaryotes. Cell 81:179–183.
  • Bienroth, S., W. Keller, and E. Wahle. 1993. Assembly of a processive messenger RNA polyadenylation complex. EMBO J. 12:585–594.
  • Bonneaud, N., L. Minvielle-Sebastia, C. Cullin, and F. Lacroute. 1994. Cellular localization of RNA14p and RNA15p, two proteins involved in mRNA stability. J. Cell Sci. 107:913–921.
  • Butler, J. S., and T. Platt. 1988. RNA processing generates the mature 39 end of yeast CYC1 messenger RNA in vitro. Science 242:1270–1274.
  • Caponigro, G., D. Muhlrad, and R. Parker. 1993. A small segment of the MATα1 transcript promotes mRNA decay in Saccharomyces cerevisiae: a stimulatory role for rare codons. Mol. Cell. Biol. 13:5141–5148.
  • Chen, J., and C. Moore. 1992. Separation of factors required for cleavage and polyadenylation of yeast pre-mRNA. Mol. Cell. Biol. 12:3470–3481.
  • Decker, C. J., and R. Parker. 1993. A turnover pathway for both stable and unstable mRNAs in yeast: evidence for a requirement for deadenylation. Genes Dev. 7:1632–1643.
  • Decker, C. J., and R. Parker. 1994. Mechanisms of mRNA degradation in eukaryotes. Trends Biochem. Sci. 19:336–340.
  • Felici, F., G. Cesareni, and J. M. X. Hughes. 1989. The most abundant small cytoplasmic RNA of Saccharomyces cerevisiae has an important function required for normal cell growth. Mol. Cell. Biol. 9:3260–3268.
  • Gallie, D. R. 1991. The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev. 5:2108–2116.
  • Gallwitz, D., F. Perrin, and R. Seidel. 1981. The actin gene in Saccharomyces cerevisiae: 59 and 39 end mapping, flanking and putative regulatory sequences. Nucleic Acids Res. 9:6339–6350.
  • Gietz, D., A. St. Jean, R. A. Woods, and R. H. Schiestl. 1992. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res. 20:1425.
  • Heaton, B., C. Decker, D. Muhlrad, J. Donahue, A. Jacobson, and R. Parker. 1992. Analysis of chimeric mRNAs identifies two regions within the STE3 mRNA which promote rapid mRNA decay. Nucleic Acids Res. 20:5365–5373.
  • Heidmann, S., B. Obermaier, K. Vogel, and H. Domdey. 1992. Identification of pre-mRNA polyadenylation sites in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:4215–4229.
  • Hyman, L. E., and C. L. Moore. 1993. Termination and pausing of RNA polymerase II downstream of yeast polyadenylation sites. Mol. Cell. Biol. 13:5159–5167.
  • Jackson, R. J., and N. Standart. 1990. Does the poly(A) tail and 39 untranslated region control mRNA translation? Cell 62:15–24.
  • Keller, W. 1995. No end yet to messenger RNA 39 processing! Cell 81:829–832.
  • Keller, W., S. Bienroth, K. M. Lang, and G. Christofori. 1991. Cleavage and polyadenylation factor (CPF) specifically interacts with the pre-mRNA 39 processing signal AAUAAA. EMBO J. 10:4241–4249.
  • Kessler, M. M., A. M. Zhelkovsky, A. Skvorak, and C. L. Moore. 1995. Monoclonal antibodies to yeast poly(A) polymerase (PAP) provide evidence for association of PAP with cleavage factor 1. Biochemistry 34:1750–1759.
  • Lingner, J., J. Kellermann, and W. Keller. 1991. Cloning and expression of the essential gene for poly(A) polymerase from S. cerevisiae. Nature (London) 354:496–498.
  • Lingner, J., I. Radkte, E. Wahle, and W. Keller. 1991. Purification and characterization of poly(A) polymerase from Saccharomyces cerevisiae. J. Biol. Chem. 266:8741–8746.
  • MacDonald, C. C., J. Wilusz, and T. Shenk. 1994. The 64-kilodalton subunit of the CstF polyadenylation factor binds to pre-mRNAs downstream of the cleavage site and influences cleavage site location. Mol. Cell. Biol. 14:6647–6654.
  • Mandart, E., M.-E. Dufour, and F. Lacroute. 1994. Inactivation of SSM4, a new Saccharomyces cerevisiae gene, suppresses mRNA instability due to rna14 mutations. Mol. Gen. Genet. 245:323–333.
  • Maquat, L. E. 1991. Nuclear mRNA export. Curr. Opin. Cell Biol. 3:1004–1012.
  • Minvielle-Sebastia, L., P. J. Preker, and W. Keller. 1994. RNA14 and RNA15 proteins as components of a yeast pre-mRNA 39-end processing factor. Science 266:1702–1705.
  • Minvielle-Sebastia, L., B. Winsor, N. Bonneaud, and F. Lacroute. 1991. Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate; sequence analysis reveals an RNA-binding domain in the RNA15 protein. Mol. Cell. Biol. 11:3075–3087.
  • Mitchelson, A., M. Simonelig, C. Williams, and K. O'Hare. 1993. Homology with Saccharomyces cerevisiae RNA14 suggests that phenotypic suppression in Drosophila melanogaster by suppressor of forked occurs at the level of RNA stability. Genes Dev. 7:241–249.
  • Muhlrad, D., C. J. Decker, and R. Parker. 1994. Deadenylation of the unstable mRNA encoded by the yeast MFA2 gene leads to decapping followed by 59 to 39 digestion of the transcript. Genes Dev. 8:855–866.
  • Muhlrad, D., C. J. Decker, and R. Parker. 1995. Turnover mechanisms of the stable yeast PGK1 mRNA. Mol. Cell. Biol. 15:2145–2156.
  • Muhlrad, D., and R. Parker. 1992. Mutations affecting stability and dead-enylation of the yeast MFA2 transcript. Genes Dev. 6:2100–2111.
  • Munroe, D., and A. Jacobson. 1990. mRNA poly(A) tail, a 39 enhancer of translational initiation. Mol. Cell. Biol. 10:3441–3455.
  • Nonet, M., C. Scafe, J. Sexton, and R. Young. 1987. Eucaryotic RNA polymerase conditional mutant that rapidly ceases mRNA synthesis. Mol. Cell. Biol. 7:1602–1611.
  • Parker, R. Unpublished data.
  • Piñol-Roma, S., and G. Dreyfuss. 1992. Shuttling of pre-mRNA binding proteins between nucleus and cytoplasm. Nature (London) 355:730–732.
  • Precker, P. J., J. Lingner, L. Minvielle-Sebastia, and W. Keller. 1995. The FIP1 gene encodes a component of a yeast pre-mRNA polyadenylation factor that directly interacts with poly(A) polymerase. Cell 81:379–389.
  • Proweller, A., and S. Butler. 1994. Efficient translation of poly(A) deficient mRNA in Saccharomyces cerevisiae. Genes Dev. 8:2629–2640.
  • Russack, R., K. W. Nehrke, and T. Platt. 1995. REF2 encodes an RNA-binding protein directly involved in yeast mRNA 39-end formation. Mol. Cell. Biol. 15:1689–1697.
  • Sachs, A., and E. Wahle. 1993. Poly(A) tail metabolism and function in eukaryotes. J. Biol. Chem. 268:22955–22958.
  • Takagaki, Y., and J. L. Manley. 1994. A polyadenylation factor subunit is the human homologue of the Drosophila suppressor of forked protein. Nature (London) 372:471–474.
  • Wahle, E., and W. Keller. 1992. The biochemistry of 39-end cleavage and polyadenylation of messenger RNA precursors. Annu. Rev. Biochem. 61: 419–440.
  • Weiss, E. A., G. M. Gilmartin, and J. R. Nevins. 1991. Poly(A) site efficiency reflects the stability of complex formation involving the downstream element. EMBO J. 10:215–219.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.