0
Views
7
CrossRef citations to date
0
Altmetric
Research Article

High-Frequency Gene Conversion between Repeated Cμ Sequences Integrated at the Chromosomal Immunoglobulin μ Locus in Mouse Hybridoma Cells

&
Pages 766-771 | Received 16 Jun 1994, Accepted 14 Nov 1994, Published online: 30 Mar 2023

REFERENCES

  • Baker, M. D. 1989. High-frequency homologous recombination between duplicate chromosomal immunoglobulin m heavy-chain constant regions. Mol. Cell. Biol. 9:5500–5507.
  • Baker, M. D., N. Pennell, L. Bosnoyan, and M. J. Shulman. 1988. Homologous recombination can restore normal immunoglobulin production in a mutant hybridoma cell line. Proc. Natl. Acad. Sci. USA 85:6432–6436.
  • Baker, M. D., and L. R. Read. 1992. Ectopic recombination within homologous immunoglobulin m gene constant regions in a mouse hybridoma cell line. Mol. Cell. Biol. 12:4422–4432.
  • Baker, M. D., and L. R. Read. 1993. Analysis of mutations introduced into the chromosomal immunoglobulin m gene. Somatic Cell Mol. Genet. 12: 467–477.
  • Baker, M. D., and M. J. Shulman. 1988. Homologous recombination between transferred and chromosomal immunoglobulin κ genes. Mol. Cell. Biol. 8:4041–4047.
  • Baker, M. D., G. E. Wu, W. M. Toone, H. Murialdo, A. C. Davis, and M. J. Shulman. 1986. A region of the immunoglobulin-m heavy chain necessary for forming pentameric IgM. J. Immunol. 137:1724–1728.
  • Baltimore, D. 1981. Gene conversion: some implications for immunoglobulin genes. Cell 24:592–594.
  • Baumann, R., M. J. Potash, and G. Köhler. 1985. Consequences of frame-shift mutations at the immunoglobulin heavy chain locus of the mouse. EMBO J. 4:351–359.
  • Bollag, R. J., and R. M. Liskay. 1991. Direct-repeat analysis of chromatid interactions during intrachromosomal recombination in mouse cells. Mol. Cell. Biol. 11:4839–4845.
  • Borst, P., and D. R. Greaves. 1987. Programmed gene rearrangements altering gene expression. Science 235:658–667.
  • Cunningham, A. J., and A. Szenberg. 1968. Further improvements in the plaque technique for detecting single antibody-forming cells. Immunology 14:599–600.
  • Doetschman, T., R. G. Gregg, N. Maeda, M. L. Hooper, D. W. Melton, S. Thompson, and O. Smithies. 1987. Targeted correction of a mutant HPRT gene in mouse embryonic stem cells. Nature (London) 330:576–578.
  • Goldberg, G. I., E. F. Vanin, A. M. Zrolka, and F. R. Blattner. 1981. Sequence of the gene for the constant region of the m chain of Balb/c mouse immunoglobulin. Gene 15:33–42.
  • Gross-Bellard, M., P. Qudet, and P. Chambon. 1973. Isolation of high-molecular weight DNA from mammalian cells. Eur. J. Biochem. 36:32–38.
  • Hasty, P., R. Ramirez-Solis, R. Krumlauf, and A. Bradley. 1991. Introduction of a subtle mutation into the Hox-2.6 locus in embryonic stem cells. Nature (London) 350:243–246.
  • Högstrand, K., and J. Böhme. 1994. A determination of the frequency of gene conversion in unmanipulated mouse sperm. Proc. Natl. Acad. Sci. USA 91:9921–9925.
  • Holliday, R. 1964. A mechanism for gene conversion in fungi. Genet. Res. 5:282–304.
  • Jerne, N. K., C. Henry, A. A. Nordin, H. Fuji, A. M. C. Koros, and I. Lefkovits. 1974. Plaque-forming cells: methodology and theory. Transplant. Rev. 18:130–191.
  • Kadyk, L. C., and L. H. Hartwell. 1992. Sister chromatids are preferred over homologs as substrates for recombinational repair in Saccharomyces cerevi-siae. Genetics 132:387–402.
  • Klar, A. J. S., J. N. Strathern, and J. B. Hicks. 1981. A position-effect control for gene transposition: state of expression of yeast mating-type genes affects their ability to switch. Cell 25:517–524.
  • Köhler, G., M. J. Potash, H. Lehrach, and M. J. Shulman. 1982. Deletions in immunoglobulin mu chains. EMBO J. 1:555–563.
  • Köhler, G., and M. J. Shulman. 1980. Immunoglobulin M mutants. Eur. J. Immunol. 10:467–476.
  • Leblon, G. 1972. Mechanism of gene conversion in Ascobolus immersus. I. Existence of a correlation between the origin of mutants induced by different mutagens and their conversion spectrum. Mol. Gen. Genet. 115:36–48.
  • Leblon, G. 1972. Mechanism of gene conversion in Ascobolus immersus. II. The relationships between the genetic alterations in b1 or b2 mutants and their conversion spectrum. Mol. Gen. Genet. 116:322–335.
  • Lichter, P., T. Cremer, J. Borden, L. Manuelidis, and D. C. Ward. 1988. Delineation of individual human chromosomes in metaphase and interphase cells by in situ suppression hybridization using recombinant DNA libraries. Hum. Genet. 80:224–234.
  • Liskay, R. M., J. L. Stachelek, and A. Letsou. 1984. Homologous recombination between repeated chromosomal sequences in mouse cells. Cold Spring Harbor Symp. Quant. Biol. 49:183–189.
  • Lu, Y., C. M. Alarcon, T. Hall, L. V. Reddy, and J. E. Donelson. 1994. A strand bias occurs in point mutations associated with variant surface glyco-protein gene conversion in Trypanosoma rhodesiense. Mol. Cell. Biol. 14: 3971–3980.
  • McCormack, W. T., L. W. Tjoelker, and C. B. Thompson. 1991. Avian B-cell development: generation of an immunoglobulin repertoire by gene conversion. Annu. Rev. Immunol. 9:219–241.
  • Meselson, M., and C. Radding. 1975. A general model for genetic recombination. Proc. Natl. Acad. Sci. USA 72:358–361.
  • Murti, J. R., M. Bumbulis, and J. C. Schimenti. 1992. High-frequency germ line gene conversion in transgenic mice. Mol. Cell. Biol. 12:2545–2552.
  • Murti, J. R., M. Bumbulis, and J. C. Schimenti. 1994. Gene conversion between unlinked sequences in the germline of mice. Genetics 137:837–843.
  • Orr-Weaver, T. L., and J. W. Szostak. 1985. Fungal recombination. Microbiol. Rev. 49:33–58.
  • Slightom, J. L., A. E. Blechl, and O. Smithies. 1980. Human fetal Gγ- and Aγ-globin genes: complete nucleotide sequences suggest that DNA can be exchanged between these duplicated genes. Cell 21:627–638.
  • Slightom, J. L., L.-Y. E. Chang, B. F. Koop, and M. Goodman. 1985. Chimpanzee fetal Gγ and Aγ globin gene nucleotide sequences provide further evidence of gene conversions in hominine evolution. Mol. Biol. Evol. 2:370–389.
  • Smith, A. J. H., and P. Berg. 1984. Homologous recombination between defective neo genes in mouse 3T6 cells. Cold Spring Harbor Symp. Quant. Biol. 49:171–181.
  • Smithies, O., R. G. Gregg, S. S. Boggs, M. A. Koralewski, and R. S. Kucherlapati. 1985. Insertion of DNA sequences into the human chromosomal β-globin locus by homologous recombination. Nature (London) 317:230–234.
  • Southern, E. M. 1975. Detection of specific sequences among DNA fragments separated by gel electrophoresis. J. Mol. Biol. 98:503–517.
  • Southern, P. J., and P. Berg. 1982. Transformation of mammalian cells to antibiotic resistance with a bacterial gene under control of the SV40 early region promoter. J. Mol. Appl. Genet. 1:327–341.
  • Stewart, S. E., and G. S. Roeder. 1989. Transcription by RNA polymerase I stimulates mitotic recombination in Saccharomyces cerevisiae. Mol. Cell. Biol. 9:3464–3472.
  • Strathern, J. N., A. Klar, J. Hicks, J. Abraham, J. Ivy, K. Nasmyth, and C. McGill. 1982. Homothallic switching of yeast mating type cassettes is initiated by a double-stranded cut in the MAT locus. Cell 31:183–192.
  • Subramani, S., and J. Rubnitz. 1985. Recombination events after transient infection and stable integration of DNA into mouse cells. Mol. Cell. Biol. 5:659–666.
  • Subramani, S., and B. L. Seaton. 1988. Homologous recombination in mitotically dividing mammalian cells, p. 549–573. In R. Kucherlapati, and G. R. Smith (ed.), Genetic recombination. American Society for Microbiology, Washington, D.C.
  • Szostak, J. W., T. L. Orr-Weaver, and R. J. Rothstein. 1983. The double-strand-break repair model for recombination. Cell 33:25–35.
  • Thomas, B. J., and R. Rothstein. 1989. Elevated recombination rates in transcriptionally active DNA. Cell 56:619–630.
  • Thomas, K. R., and M. R. Capecchi. 1987. Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51:503–512.
  • Trimble, W. S., M. D. Baker, G. L. Boulianne, H. Murialdo, N. Hozumi, and M. J. Shulman. 1986. Analysis of hybridoma mutants defective in synthesis of immunoglobulin M. Somatic Cell Mol. Genet. 12:467–477.
  • Valancius, V., and O. Smithies. 1991. Testing an ‘‘in-out’’ targeting procedure for making subtle genomic modifications in mouse embryonic stem cells. Mol. Cell. Biol. 11:1402–1408.
  • Voekel-Meiman, K., R. L. Keil, and G. S. Roeder. 1987. Recombination-stimulating sequences in yeast ribosomal DNA correspond to sequences regulating transcription by RNA polymerase I. Cell 48:1071–1079.
  • White, M. A., M. Wierdl, P. Detloff, and T. D. Petes. 1991. DNA-binding protein RAP1 stimulates meiotic recombination at the His4 locus in yeast. Proc. Natl. Acad. Sci. USA 88:9755–9759.
  • Wysocki, L. J., and M. L. Gefter. 1989. Gene conversion and the generation of antibody diversity. Annu. Rev. Biochem. 58:509–531.
  • Yu-Sun, C. C., M. R. T. Wickramaratne, and H. L. K. Whitehouse. 1977. Mutagen specificity in conversion pattern in Sordaria brevicollis. Genet. Res. 29:65–81.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.