14
Views
125
CrossRef citations to date
0
Altmetric
Research Article

Targeted Disruption of Retinoic Acid Receptor α (RARα) and RARγ Results in Receptor-Specific Alterations in Retinoic Acid-Mediated Differentiation and Retinoic Acid Metabolism

, , , , &
Pages 843-851 | Received 22 Jul 1994, Accepted 11 Nov 1994, Published online: 30 Mar 2023

REFERENCES

  • Achkar, C., and L. J. Gudas. Unpublished data.
  • Alcalay, M., D. Zangrilli, P. P. Pandolfi, L. Longo, A. Mencarelli, A. Giacomucci, M. Rocchi, A. Biondi, A. Rambaldi, F. LoCoco, D. Diverio, E. Donti, F. Grignani, and P. G. Pelicci. 1991. Translocation breakpoint of acute promyelocytic leukemia lies within the retinoic acid receptor α locus. Proc. Natl. Acad. Sci. USA 88:1977–1981.
  • Aneskievich, B. J., and E. Fuchs. 1992. Terminal differentiation in keratinocytes involves positive as well as negative regulation by retinoic acid receptors and retinoid X receptors at retinoid response elements. Mol. Cell. Biol. 12:4862–4871.
  • Arceci, R. J., A. A. J. King, M. C. Simon, S. H. Orkin, and D. B. Wilson. 1993. Mouse GATA-4: a retinoic acid-inducible GATA-binding transcription factor expressed in endodermally derived tissues and heart. Mol. Cell. Biol. 13:2235–2246.
  • Blaner, W. S., and J. A. Olson. 1994. Retinol and retinoic acid metabolism, p. 229–256. In M. B. Sporn, A. B. Roberts, and D. S. Goodman (ed.), The retinoids: biology, chemistry, and medicine. Raven Press, New York.
  • Boylan, J. F., and L. J. Gudas. 1991. Overexpression of the cellular retinoic acid binding protein-I (CRABP-I) results in a reduction in differentiation-specific gene expression in F9 teratocarcinoma cells. J. Cell Biol. 112:965–979.
  • Boylan, J. F., and L. J. Gudas. 1992. The level of CRABP-I expression influences the amounts and types of all-trans-retinoic acid metabolites in F9 teratocarcinoma stem cells. J. Biol. Chem. 267:21486–21491.
  • Boylan, J. F., D. Lohnes, R. Taneja, P. Chambon, and L. J. Gudas. 1993. Loss of RAR γ function by gene disruption results in aberrant hoxa-1 expression and differentiation upon retinoic acid treatment. Proc. Natl. Acad. Sci. USA 90:9601–9605.
  • Brand, N., M. Petkovich, A. Krust, P. Chambon, H. de Thé, A. Marchio, P. Tiollais, and A. Dejean. 1988. Identification of a second human retinoic acid receptor. Nature (London) 332:850–853.
  • Chambon, P. Unpublished observations.
  • Chambon, P., A. Zelent, M. Petkovich, C. Mendelsohn, P. Leroy, A. Krust, P. Kastner, and N. Brand. 1991. The family of retinoic acid nuclear receptors, p. 10–27. In J. H. Saurat (ed.), Retinoids: 10 years on. S. Karger, Basel.
  • Chen, A. C. Unpublished data.
  • Chen, A. C., and L. J. Gudas. Unpublished data.
  • De Luca, L. M. 1991. Retinoids and their receptors in differentiation. FASEB J. 5:2924–2933.
  • de Thé, H., C. Chomienne, M. Lanotte, and A. Dejean. 1990. The t(15;17) translocation of acute promyelocytic leukemia fuses the retinoic acid receptor α gene to a novel transcribed locus. Nature (London) 347:558–561.
  • de Thé, H., M. Vivanco, P. Tiollais, H. Stunnenberg, and A. Dejean. 1990. Identification of a retinoic acid responsive element in the retinoic acid receptor β gene. Nature (London) 343:177–180.
  • Dollé, P., E. Ruberte, P. Kastner, M. Petkovich, C. M. Stoner, L. J. Gudas, and P. Chambon. 1989. Differential expression of genes encoding α, β, and γ retinoic acid receptors and CRABP in the developing limbs of the mouse. Nature (London) 342:702–705.
  • Durand, B., M. Saunders, P. Leroy, M. Leid, and P. Chambon. 1992. All-trans and 9-cis retinoic acid induction of CRABP-II transcription is mediated by RAR-RXR heterodimers bound to DR1 and DR2 repeated motifs. Cell 71:73–85.
  • Fainsod, A., A. Awgulewitsch, and F. H. Ruddle. 1987. Expression of the murine homeo box gene Hox 1.5 during embryogenesis. Dev. Biol. 124:125–133.
  • Fiorella, P. D., and J. L. Napoli. 1991. Expression of cellular retinoic acid binding protein (CRABP) in Escherichia coli. J. Biol. Chem. 266:16572–16579.
  • Fuchs, E., and H. Green. 1981. Regulation of terminal differentiation of cultured human keratinocytes by vitamin A. Cell 25:617–625.
  • Garner, M. M., and A. Revzin. 1981. A gel electrophoresis method for quantifying the binding of proteins to specific DNA regions: application to components of the Escherichia coli lactose operon regulatory system. Nucleic Acids Res. 9:3047–3060.
  • Gaub, M. P., C. Rochette-Egly, Y. Lutz, S. Ali, H. Metthes, I. Scheuer, and P. Chambon. 1992. Immunodetection of multiple species of retinoic acid receptor γ: evidence for phosphorylation. Exp. Cell Res. 201:335–346.
  • Giguere, V., S. Lyn, P. Yip, C.-H. Siu, and S. Amin. 1990. Molecular cloning of cDNA encoding a second cellular retinoic acid-binding protein. Proc. Natl. Acad. Sci. USA 87:6233–6237.
  • Gubler, M. L., and M. I. Sherman. 1985. Metabolism of retinoids by embryonal carcinoma cells. J. Biol. Chem. 260:9552–9558.
  • Gudas, L. J., M. B. Sporn, and A. B. Roberts. 1994. Cellular biology and the biochemistry of retinoids, p. 443–520. In M. B. Sporn, A. B. Roberts, and D. S. Goodman (ed.), The retinoids: biology, chemistry, and medicine. Raven Press, New York.
  • Heery, D. M., T. Zacharewski, B. Pierrat, H. Gronemeyer, P. Chambon, and R. Losson. 1993. Efficient transactivation by retinoic acid receptors in yeast requires retinoid X receptors. Proc. Natl. Acad. Sci. USA 90:4281–4285.
  • Heyman, R. A., D. J. Mangelsdorf, J. A. Dyck, R. B. Stein, G. Eichele, R. M. Evans, and C. Thaller. 1992. 9-Cis-Retinoic acid is a high-affinity ligand for the retinoid X receptor. Cell 68:397–406.
  • Hofmann, C., and G. Eichele. 1994. Retinoids in development, p. 387–442. In M. B. Sporn, A. B. Roberts, and D. S. Goodman (ed.), The retinoids: biology, chemistry, and medicine. Raven Press, New York.
  • Hong, W. K., and L. M. Itri. 1994. Retinoids and human cancer, p. 597–630. In M. B. Sporn, A. B. Roberts, and D. S. Goodman (ed.), The retinoids: biology, chemistry, and medicine. Raven Press, New York.
  • Hong, W. K., S. Lippman, L. M. Itri, D. D. Karp, J. S. Lee, R. Byers, S. P. Schantz, A. Kramer, R. Lotan, L. J. Peters, I. W. Dimery, B. W. Brown, and H. Goepfert. 1990. Prevention of second primary tumors with isotretinoin in squamous-cell carcinoma of the head and neck. N. Engl. J. Med. 323:795–801.
  • Hosler, B. A., G. J. LaRosa, J. F. Grippo, and L. J. Gudas. 1989. Expression of REX-1, a gene containing zinc finger motifs, is rapidly reduced by retinoic acid in F9 teratocarcinoma cells. Mol. Cell. Biol. 9:5623–5629.
  • Hosler, B. A., M. B. Rogers, C. A. Kozak, and L. J. Gudas. 1993. Contribution of an octamer motif to the expression of the zinc finger gene REX-1 (Zpf-42) in murine F9 teratocarcinoma cells. Mol. Cell. Biol. 13:2919–2928.
  • Hu, L., and L. J. Gudas. 1990. Cyclic AMP analogs and retinoic acid influence the expression of retinoic acid receptor α, β, and γ mRNAs in F9 teratocarcinoma cells. Mol. Cell. Biol. 10:391–396.
  • Kastner, P., A. Krust, J. Mendelsohn, J. M. Garnier, A. Zelent, P. Leroy, A. Staub, and P. Chambon. 1990. Murine isoforms of retinoic acid receptor γ with specific patterns of expression. Proc. Natl. Acad. Sci. USA 87:2700–2704.
  • Kastner, P., A. Perez, Y. Lutz, C. Rochette-Egly, M.-P. Gaub, B. Durand, M. Lanotte, R. Berger, and P. Chambon. 1992. Structure, localization and transcriptional properties of two classes of retinoic acid receptor α fusion proteins in acute promyelocytic leukemia (APL): structural similarities with a new family of oncoproteins. EMBO J. 11:629–642.
  • Krust, A., P. H. Kastner, M. Petkovich, A. Zelent, and P. Chambon. 1989. A third human retinoic acid receptor, hRARγ. Proc. Natl. Acad. Sci. USA 86:5310–5314.
  • Langston, A. W., and L. J. Gudas. 1992. Identification of a retinoic acid response enhancer 39 of the murine homeobox gene Hox 1.6. Mech. Dev. 38:217–228.
  • LaRosa, G. J., and L. J. Gudas. 1988. An early effect of retinoic acid: cloning of an mRNA (ERA-1) exhibiting rapid and protein synthesis-independent induction during teratocarcinoma stem cell differentiation. Proc. Natl. Acad. Sci. USA 85:329–333.
  • LaRosa, G. J., and L. J. Gudas. 1988. Early retinoic acid-induced F9 terato-carcinoma stem cell gene ERA-1: alternative splicing creates transcripts for both a homeobox-containing protein and one lacking the homeobox. Mol. Cell. Biol. 8:3906–3917.
  • Leid, M., P. Kastner, and P. Chambon. 1992. Multiplicity generates diversity in the retinoid acid signalling pathways. Trends Biochem. Sci. 17:427–433.
  • Leroy, P., A. Krust, A. Zelent, C. Mendelsohn, J.-M. Garnier, P. Kastner, A. Dierich, and P. Chambon. 1991. Multiple isoforms of the mouse retinoic acid receptor α are generated by alternative splicing and differential induction by retinoid acid. EMBO J. 10:59–69.
  • Levin, A. A., L. J. Sturzenbecker, S. Kazmer, T. Bosakowski, C. Huselton, G. Allenby, J. Speck, C. Kratzeisen, M. Rosenberger, A. Lovey, and J. F. Grippo. 1992. 9-Cis retinoic acid stereoisomer binds and activates the nuclear receptor RXRα. Nature (London) 355:359–361.
  • Li, E., H. M. Sucov, K. Lee, R. M. Evans, and R. Jaenisch. 1993. Normal development and growth of mice carrying a targeted disruption of the α1 retinoic acid receptor gene. Proc. Natl. Acad. Sci. USA 90:1590–1594.
  • Lohnes, D., P. Kastner, A. Dierich, M. Mark, M. LeMeur, and P. Chambon. 1993. Function of retinoic acid receptor γ in the mouse. Cell 73:643–658.
  • Lufkin, T., A. Dierich, M. LeMeur, M. Mark, and P. Chambon. 1991. Disruption of the Hox-1.6 homeobox gene results in defects in a region corresponding to its rostral domain of expression. Cell 66:1105–1119.
  • Lufkin, T., D. Lohnes, M. Mark, A. Dierich, P. Gorry, M. P. Gaub, M. LeMeur, and P. Chambon. 1993. High postnatal lethality and testis degeneration in retinoic acid receptor α mutant mice. Proc. Natl. Acad. Sci. USA 90:7225–7229.
  • Mangelsdorf, D. J., E. S. Ong, J. A. Dyck, and R. M. Evans. 1990. Nuclear receptor that identifies a novel retinoic acid response pathway. Nature (London) 345:224–229.
  • Mangelsdorf, D. J., K. Umesono, and R. M. Evans. 1994. The retinoid receptors, p. 319–350. In M. B. Sporn, A. B. Roberts, and D. S. Goodman (ed.), The retinoids: biology, chemistry, and medicine. Raven Press, New York.
  • McClean, S. W., M. E. Rudel, E. G. Gross, J. J. DeGiovanna, and G. L. Peck. 1982. Liquid-chromatographic assay for retinol (vitamin A) and retinol analogs in therapeutic trials. Clin. Chem. 28:693–696.
  • McVey, J. H., S. Nomura, P. Kelly, I. J. Mason, and B. L. Hogan. 1988. Characterization of the mouse SPARC/osteonectin gene. Intron/exon organization and an unusual promoter region. J. Biol. Chem. 263:11111–11116.
  • Mortensen, R. M., D. A. Conner, S. Chao, A. A. T. Geisterfer-Lowrance, and J. G. Seidman. 1992. Production of homozygous mutant ES cells with a single targeting construct. Mol. Cell. Biol. 12:2391–2395.
  • Nagpal, S., S. Friant, H. Nakshrati, and P. Chambon. 1993. RARs and RXRs: evidence for two autonomous transactivation functions (AF-1 and AF-2) and heterodimerization in vivo. EMBO J. 12:2349–2360.
  • Okazawa, H., K. Okamoto, F. Ishino, T. Ishino-Kaneko, S. Takeda, Y. Toyoda, M. Muramatsu, and H. Hamada. 1991. The oct-3 gene, a gene for an embryonic transcription factor, is controlled by a retinoic acid repressible enhancer. EMBO J. 10:2997–3005.
  • Pijnappel, W. W. M., H. F. J. Hendriks, G. E. Folkers, C. E. van den Brink, E. J. Dekker, C. Edelenbosch, P. T. van der Saag, and A. J. Durston. 1993. The retinoid ligand 4-oxo-retinoic acid is a highly active modulator of positional specification. Nature (London) 366:340–344.
  • Rochette-Egly, C., M.-P. Gaub, Y. Lutz, S. Ali, I. Scheuer, and P. Chambon. 1992. Retinoic acid receptor β: immunodetection and phosphorylation on tyrosine residues. Mol. Endocrinol. 6:2197–2209.
  • Rochette-Egly, C., Y. Lutz, M. Saunders, I. Scheuer, M.-P. Gaub, and P. Chambon. 1991. Retinoic acid receptor γ: specific immunodetection and phosphorylation. J. Cell Biol. 115:535–545.
  • Rogers, M. B., V. Rosen, J. M. Wozney, and L. J. Gudas. 1992. Bone morphogenetic proteins-2 and 4 are involved in the retinoic acid-induced differentiation of embryonal carcinoma cells. Mol. Biol. Cell 3:189–196.
  • Ruberte, E., P. Dollé, P. Chambon, and G. Morriss-Kay. 1990. Retinoic acid receptors and cellular retinoid binding proteins. II. Their differential pattern of transcription during early morphogenesis in mouse embryos. Development 111:45–60.
  • Schöler, H. R., R. Balling, A. K. Hatzopoulos, N. Suzuki, and P. Gruss. 1989. Octamer binding proteins confer transcriptional activity in early mouse em-bryogenesis. EMBO J. 8:2551–2557.
  • Stoner, C. M., and L. J. Gudas. 1989. Mouse cellular retinoic acid binding protein: cloning, complimentary DNA sequence, and messenger RNA expression during the retinoic acid-induced differentiation of F9 wild type and RA 3-10 mutant teratocarcinoma cells. Cancer Res. 49:1497–1504.
  • Stunnenberg, H. G. 1993. Mechanism of transactivation by retinoic acid receptors. Bioessays 15:309–315.
  • Tabin, C. J. 1991. Retinoids, homeoboxes, and growth factors: toward molecular models for limb development. Cell 66:199–217.
  • Thaller, C., and G. Eichele. 1987. Identification and spatial distribution of retinoids in the developing chick limb bud. Nature (London) 327:625–628.
  • Tickle, C., B. Alberts, L. Wolpert, and J. Lee. 1982. Local application of retinoic acid to the limb bud mimics the action of the polarizing region. Nature (London) 296:564–566.
  • Vasios, G. W., J. D. Gold, M. Petkovich, P. Chambon, and L. J. Gudas. 1989. A retinoic acid responsive element is present in the 59 flanking region of the laminin B1 gene. Proc. Natl. Acad. Sci. USA 86:9099–9103.
  • Vasios, G. W., S. Mader, J. D. Gold, M. Leid, Y. Lutz, M.-P. Gaub, P. Chambon, and L. Gudas. 1991. The late retinoic acid induction of laminin B1 gene transcription involves RAR binding to the responsive element. EMBO J. 10:1149–1158.
  • Wang, S.-Y. 1992. Structure of the gene and its retinoic acid-regulatory region for murine J6 serpin: an F9 teratocarcinoma cell retinoic acid-inducible protein. J. Biol. Chem. 267:15362–15366.
  • Wang, S.-Y., and L. J. Gudas. 1990. A retinoic acid inducible mRNA from F9 teratocarcinoma cells encodes a novel protease inhibitor homologue. J. Biol. Chem. 265:15818–15822.
  • Wang, S.-Y., G. LaRosa, and L. J. Gudas. 1985. Molecular cloning of gene sequences transcriptionally regulated by retinoic acid and dibutyryl cyclic AMP in cultured mouse teratocarcinoma cells. Dev. Biol. 107:75–86.
  • Warrell, R. P., Jr., H. de Thé, Z.-Y. Wang, and L. Degos. 1993. Acute promyelocytic leukemia. N. Engl. J. Med. 329:177–189.
  • Warrell, R. P., Jr., S. R. Frankel, W. H. Miller, Jr., D. A. Scheinberg, L. M. Itri, W. N. Hittelman, R. Vyas, M. Andreeff, A. Tafuri, A. Jakubowski, J. Gabrilove, M. S. Gordon, and E. Dmitrovsky. 1991. Differentiation therapy of acute promyelocytic leukemia with tretinoin (all-trans-retinoic acid). N. Engl. J. Med. 324:1385–1393.
  • Wilen, E. B., and L. J. Gudas. Unpublished data.
  • Williams, J. B., and J. Napoli. 1985. Metabolism of retinoic acid and retinol during differentiation of F9 embryonal carcinoma cells. Proc. Natl. Acad. Sci. USA 82:4658–4662.
  • Wozney, J. M., V. Rosen, A. J. Celeste, L. M. Mitsock, M. J. Whitters, R. W. Kriz, R. M. Hewick, and E. A. Wang. 1988. Novel regulators of bone formation: molecular clones and activities. Science 242:1528–1534.
  • Zelent, A., A. Krust, M. Petkovich, P. Kastner, and P. Chambon. 1989. Cloning of murine α and β retinoic acid receptors and a novel receptor γ predominantly expressed in the skin. Nature (London) 339:714–717.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.