27
Views
286
CrossRef citations to date
0
Altmetric
Research Article

Three Different Regulatory Mechanisms Enable Yeast Hexose Transporter (HXT) Genes To Be Induced by Different Levels of Glucose

&
Pages 1564-1572 | Received 17 Aug 1994, Accepted 08 Dec 1994, Published online: 30 Mar 2023

REFERENCES

  • Andreadis, A., Y.-P. Hsu, M. Hermodson, G. Kohlhaw, and P. R. Schimmel. 1984. Yeast LEU2: repression of mRNA levels by leucine and primary structure of the gene product. J. Biol. Chem. 259:8059–8062.
  • Balasubramanian, B., C. V. Lowry, and R. S. Zitomer. 1993. The Rox1 repressor of the Saccharomyces cerevisiae hypoxic genes is a specific DNA-binding protein with a high-mobility-group motif. Mol. Cell. Biol. 13:6071–6078.
  • Bisson, L. F. 1988. High-affinity glucose transport in Saccharomyces cerevi-siae is under general glucose repression control. J. Bacteriol. 170:4838–4845.
  • Bisson, L. F., D. M. Coons, A. L. Kruckeberg, and D. A. Lewis. 1993. Yeast sugar transporters. Crit. Rev. Biochem. Mol. Biol. 28:259–308.
  • Bisson, L. F., and D. G. Fraenkel. 1983. Involvement of kinases in glucose and fructose uptake by Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:1730–1734.
  • Bisson, L. F., and D. G. Fraenkel. 1984. Expression of kinase-dependent glucose uptake in Saccharomyces cerevisiae. J. Bacteriol. 159:1013–1017.
  • Bisson, L. F., L. Neigeborn, M. Carlson, and D. G. Fraenkel. 1987. The SNF3 gene is required for high-affinity glucose transport in Saccharomyces cerevi-siae. J. Bacteriol. 169:1656–1662.
  • Carlson, M. Personal communication.
  • Celenza, J. L., and M. Carlson. 1986. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 233:1175–1180.
  • Ciriacy, M. 1977. Isolation and characterization of yeast mutants defective in intermediary carbon metabolism and in carbon catabolite derepression. Mol. Gen. Genet. 154:213–220.
  • Conklin, D. S., C. Kung, and M. R. Culbertson. 1993. The COT2 gene is required for glucose-dependent divalent cation transport in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:2041–2049.
  • Dohmen, R. J., A. W. M. Strasser, C. B. Höner, and C. P. Hollenberg. 1991. An efficient transformation procedure enabling long-term storage of component cells of various yeast genera. Yeast 7:691–692.
  • Elder, R. T., E. Y. Loh, and R. W. Davis. 1983. RNA from the yeast trans-posable element Ty1 has both ends in the direct repeats, a structure similar to retrovirus RNA. Proc. Natl. Acad. Sci. USA 80:2432–2436.
  • Entian, K.-D., and J. A. Barnett. 1992. Regulation of sugar utilization by Saccharomyces cerevisiae. Trends Biochem. Sci. 17:506–510.
  • Erickson, J. R., and M. Johnston. 1993. Suppressors reveal two classes of glucose repression genes in the yeast Saccharomyces cerevisiae. Genetics 136:1271–1278.
  • Flick, J., and M. Johnston. 1990. Two systems of glucose repression of the GAL1 promoter in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:4757–4769.
  • Flick, J., and M. Johnston. 1991. GRR1 of Saccharomyces cerevisiae is required for glucose repression and encodes a protein with leucine-rich repeats. Mol. Cell. Biol. 11:5101–5112.
  • Frougel, P., M. Vaxillaire, F. Sun, G. Velho, H. Zouali, M. O. Butel, S. Lesage, N. Vionnet, K. Clement, F. Fougerousse, Y. Tanizawa, J. Weissen-bach, J. S. Beckman, G. M. Lathrop, P. Passa, M. A. Permutt, and D. Cohen. 1992. Close linkage of glucokinase locus on chromosomal 7p to early-onset non-insulin-dependent diabetes mellitus. Nature (London) 356:162–164.
  • Gancedo, J. M. 1992. Carbon catabolite repression in yeast. Eur. J. Biochem. 206:297–313.
  • Griggs, D. W., and M. Johnston. 1991. Regulated expression of the GAL4 activator gene in yeast provides a sensitive genetic switch for glucose repression. Proc. Natl. Acad. Sci. USA 88:8597–8601.
  • Hughes, S. D., J. H. Johnson, C. Quaade, and C. B. Newgard. 1992. Engineering of glucose-stimulated insulin secretion and biosynthesis in non-islet cells. Proc. Natl. Acad. Sci. USA 89:688–692.
  • Johnston, M., and M. Carlson. 1993. Regulation of carbon and phosphate utilization, p. 193–281. In J. Broach, E. W. Jones, and J. Pringle (ed.), The biology of the yeast Saccharomyces, vol. 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Johnston, M., J. S. Flick, and T. Pexton. 1994. Multiple mechanisms provide rapid and stringent glucose repression of GAL gene expression in Saccha-romyces cerevisiae. Mol. Cell. Biol. 14:3834–3841.
  • Keleher, C. A., M. J. Reed, J. Schultz, M. Carlson, and A. D. Johnson. 1992. Ssn6-Tup1 is a general repressor of transcription in yeast. Cell 68:709–719.
  • Ko, C. H., H. Liang, and R. F. Gaber. 1993. Roles of multiple glucose transporters in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:638–648.
  • Kruckeberg, A. L., and L. F. Bisson. 1990. The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity transport. Mol. Cell. Biol. 10:5903–5913.
  • Leong, T., and M. Johnston. Unpublished data.
  • Lewis, D. A., and L. F. Bisson. 1991. The HXT1 gene product of Saccharo-myces cerevisiae is a new member of the family of hexose transporters. Mol. Cell. Biol. 11:3804–3813.
  • Marshall-Carlson, L., J. L. Celenza, B. C. Laurent, and M. Carlson. 1990. Mutational analysis of the SNF3 glucose transporter of Saccharomyces cerevisiae. Mol. Cell. Biol. 10:1105–1115.
  • Marshall-Carlson, L., L. Neigeborn, D. Coons, L. Bisson, and M. Carlson. 1991. Dominant and recessive suppressors that restore glucose transport in a yeast snf3 mutant. Genetics 128:505–512.
  • Moore, A. P., F. A. Sagliocco, R. M. C. Wood, and A. J. P. Brown. 1991. Yeast glycolytic mRNAs are differentially regulated. Mol. Cell. Biol. 11:5330–5337.
  • Myers, A. M., A. Tzagoloff, D. M. Kinney, and C. J. Lusty. 1986. Yeast shuttle and integrative vectors with multiple cloning sites suitable for construction of lacZ fusions. Gene 45:299–310.
  • Nehlin, J. O., M. Carlberg, and H. Ronne. 1992. Yeast SKO1 gene encodes a bZIP protein that binds to the CRE motif and acts as a repressor of transcription. Nucleic Acids Res. 20:5271–5278.
  • Nehlin, J. O., and H. Ronne. 1990. Yeast MIG1 repressor is related to the mammalian early growth response and Wilms’ tumour finger proteins. EMBO J. 9:2891–2898.
  • Neigeborn, L., P. Schwartzberg, R. Reid, and M. Carlson. 1986. Null mutations in the SNF3 gene of Saccharomyces cerevisiae cause a different phenotype than do previously isolated missense mutations. Mol. Cell. Biol. 6:3569–3574.
  • Özcan, S., K. Freidel, A. Leuker, and M. Ciriacy. 1993. Glucose uptake and catabolite repression in dominant HTR1 mutants of Saccharomyces cerevi-siae. J. Bacteriol. 175:5520–5528.
  • Özcan, S., F. Schulte, K. Freidel, A. Weber, and M. Ciriacy. 1994. Glucose uptake and metabolism in grr1/cat80 mutants of Saccharomyces cerevisiae. Eur. J. Biochem. 224:605–611.
  • Prior, C., P. Mamessier, H. Fukuhara, X. J. Chen, and M. Wesolowski-Louvel. 1993. The hexokinase gene is required for transcriptional regulation of the glucose transporter gene RAG1 in Kluyveromyces lactis. Mol. Cell. Biol. 13:3882–3889.
  • Rose, M., W. Albig, and K.-D. Entian. 1991. Glucose repression in Saccha-romyces cerevisiae is directly associated with hexokinase phosphorylation by hexokinases PI and PII. Eur. J. Biochem. 199:511–518.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schüller, H.-J., and K.-D. Entian. 1987. Isolation and expression analysis of two yeast regulatory genes involved in the derepression of glucose-repressible enzymes. Mol. Gen. Genet. 209:366–373.
  • Schüller, H.-J., and K.-D. Entian. 1991. Extragenic suppressors of yeast glucose derepression mutants leading to constitutive synthesis of several glucose-repressible enzymes. J. Bacteriol. 173:2045–2052.
  • Schultz, J., and M. Carlson. 1987. Molecular analysis of SSN6, a gene functionally related to the SNF1 protein kinase of Saccharomyces cerevisiae. Mol. Cell. Biol. 7:3637–3645.
  • Selleck, S. B., and J. Majors. 1987. Photofootprinting in vivo detects transcription-dependent changes in yeast TATA-boxes. Nature (London) 325: 173–177.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Simpson, I. S., and S. W. Cushman. 1986. Hormonal regulation of mammalian glucose transporter. Annu. Rev. Biochem. 55:1059–1089.
  • Theodoris, G., N. M. Fong, D. M. Coons, and L. F. Bisson. 1994. High-copy suppression of glucose transport defects by HXT4 and regulatory elements in the promoters of the HXT genes in Saccharomyces cerevisiae. Genetics 137: 957–966.
  • Trumbly, R. J. 1992. Glucose repression in the yeast Saccharomyces cerevisiae. Mol. Microbiol. 6:15–21.
  • Vallier, L. G., and M. Carlson. 1991. New SNF genes, GAL11 and GRR1 affect SUC2 expression in Saccharomyces cerevisiae. Genetics 129:675–684.
  • Vallier, L. G., D. Coons, L. F. Bisson, and M. Carlson. 1994. Altered regulatory responses to glucose are associated with a glucose transport defect in grr1 mutants of Saccharomyces cerevisiae. Genetics 136:1279–1285.
  • Wendell, D. L., and L. F. Bisson. 1993. Physiological characterization of putative high-affinity glucose transport protein Hxt2 of Saccharomyces cerevisiae by use of anti-synthetic peptide antibodies. J. Bacteriol. 175:7689–7696.
  • Wendell, D. L., and L. F. Bisson. 1994. Expression of high-affinity glucose transport protein Hxt2p of Saccharomyces cerevisiae is both repressed and induced by glucose and appears to be regulated posttranslationally. J. Bac-teriol. 176:3730–3737.
  • Williams, F. E., and R. J. Trumbly. 1990. Characterization of TUP1, a mediator of glucose repression in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:6500–6511.
  • Williams, F. E., U. Varanasi, and R. J. Trumbly. 1991. The CYC8 and TUP1 proteins involved in glucose repression in Saccharomyces cerevisiae are associated with a protein complex. Mol. Cell. Biol. 11:3307–3316.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.