7
Views
37
CrossRef citations to date
0
Altmetric
Research Article

Role of the Saccharomyces cerevisiae General Regulatory Factor CP1 in Methionine Biosynthetic Gene Transcription

, &
Pages 1879-1888 | Received 25 Jul 1994, Accepted 03 Jan 1995, Published online: 30 Mar 2023

REFERENCES

  • Amasino, R. M. 1986. Acceleration of nucleic acid hybridization rate by polyethylene glycol. Anal. Biochem. 152:304–307.
  • Baker, R. E., M. Fitzgerald-Hayes, and T. C. O'Brien. 1989. Purification of the yeast centromere binding protein CP1 and a mutational analysis of its binding site. J. Biol. Chem. 264:10843–10850.
  • Baker, R. E., and D. C. Masison. 1990. Isolation of the gene encoding the Saccharomyces cerevisiae centromere-binding protein CP1. Mol. Cell. Biol. 10:2458–2467.
  • Boeke, J. D., F. Lacroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-59-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistence. Mol. Gen. Genet. 197:345–346.
  • Bram, R. J., and R. D. Kornberg. 1987. Isolation of a Saccharomyces cerevi-siae centromere DNA-binding protein, its human homolog, and its possible role as a transcription factor. Mol. Cell. Biol. 7:403–409.
  • Buchman, A. R., W. J. Kimmerly, J. Rine, and R. D. Kornberg. 1988. Two DNA-binding factors recognize specific sequences at silencers, upstream activating sequences, autononously replicating sequences, and telomeres in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:210–225.
  • Buchman, A. R., and R. D. Kornberg. 1990. A yeast ARS binding protein activates transcription synergistically in combination with other weak activating factors. Mol. Cell. Biol. 10:887–897.
  • Cai, M., and R. W. Davis. 1990. The yeast centromere binding protein CBF-I, a member of the helix-loop-helix protein family, is required for chromosome stability and methionine prototrophy. Cell 61:437–446.
  • Chasman, D. I., N. F. Lue, A. R. Buchman, J. W. LaPointe, Y. Lorch, and R. D. Kornberg. 1990. A yeast protein that influences the chomatin structure of UASG and functions as a powerful auxiliary gene activator. Genes Dev. 4:503–514.
  • Cherest, H., N. N. Thao, and Y. Surdin-Kerjan. 1985. Transcriptional regulation of the MET3 gene of Saccharomyces cerevisiae. Gene 34:269–281.
  • Devlin, C., K. Tice-Baldwin, D. Shore, and K. T. Arndt. 1991. RAP1 is required for BAS1/BAS2- and GCN4-dependent transcription of the yeast HIS4 gene. Mol. Cell. Biol. 11:3642–3651.
  • Donahue, T. F., P. J. Farabaugh, and G. R. Fink. 1982. The nucleotide sequence of the HIS4 region of yeast. Gene 18:47–59.
  • Fedor, M. J., N. F. Lue, and R. D. Kornberg. 1988. Statistical positioning of nucleosomes by specific protein-binding to an upstream activating sequence in yeast. J. Mol. Biol. 204:109–127.
  • Fitzgerald-Hayes, M. 1987. Yeast centromeres. Yeast 3:187–200.
  • Guarente, L., and M. Ptashne. 1981. Fusion of Escherichia coli lacZ to the cytochrome c gene of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 78:2199–2203.
  • Herrick, D., R. Parker, and A. Jacobson. 1990. Identification and comparison of stable and unstable mRNAs in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2269–2284.
  • Hill, D. E., I. A. Hope, J. P. Macke, and K. Struhl. 1986. Saturation mu-tagenesis of the yeast his3 regulatory site: requirements for transcriptional induction and for binding by GCN4 activator protein. Science 234:451–457.
  • Hinnebusch, A. G. 1988. Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol. Rev. 52:248–273.
  • Hull, M. W., G. Thomas, J. M. Huibregtse, and D. R. Engelke. 1991. Protein-DNA interactions in vivo—examining genes in Saccharomyces cerevisiae and Drosophila melanogaster by chromatin footprinting. Methods Cell Biol. 35: 383–415.
  • Ito, H., K. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Kent, N. A., J. S. H. Tsang, D. J. Crowther, and J. Mellor. 1994. Chromatin structure modulation in Saccharomyces cerevisiae by centromere and promoter factor 1. Mol. Cell. Biol. 14:5229–5241.
  • Kerjan, P., H. Cherest, and Y. Surdin-Kerjan. 1986. Nucleotide sequence of the Saccharomyces cerevisiae MET25 gene. Nucleic Acids Res. 14:7861–7871.
  • Masison, D. C., and R. E. Baker. 1992. Meiosis in Saccharomyces cerevisiae mutants lacking the centromere-binding protein CP1. Genetics 131:43–53.
  • Masison, D. C., K. F. O'Connell, and R. E. Baker. 1993. Mutational analysis of the Saccharomyces cerevisiae general regulatory factor CP1. Nucleic Acids Res. 21:4133–4141.
  • McKenzie, E. A., N. A. Kent, S. J. Dowell, F. Moreno, L. E. Bird, and J. Mellor. 1993. The centromere and promoter factor 1, CPF1, of Saccharo-myces cerevisiae modulates gene activity through a family of factors including SPT2, RPD1, (SIN3), RPD3 and CCR4. Mol. Gen. Genet. 240:374–386.
  • Mellor, J., W. Jiang, M. Funk, J. Rathjen, C. A. Barnes, T. Hinz, J. H. Hegemann, and P. Philippsen. 1990. CPF1, a yeast protein which functions in centromeres and promoters. EMBO J. 9:4017–4026.
  • Mellor, J., J. Rathjen, W. Jiang, and S. J. Dowell. 1991. DNA binding of CPF1 is required for optimal centromere function but not for maintaining methionine prototrophy in yeast. Nucleic Acids Res. 19:2961–2969.
  • Mountain, H. A., A. Byström, and C. Korch. 1993. The general amino acid control regulates MET4, which encodes a methionine-specific transcriptional activator of Saccharomyces cerevisiae. Mol. Microbiol. 7:215–228.
  • Mountain, H. A., A. S. Byström, J. Tang Larsen, and C. Korch. 1991. Four major transcriptional responses in the methionine/threonine biosynthetic pathway of Saccharomyces cerevisiae. Yeast 7:781–803.
  • Ng, R., and J. Abelson. 1980. Isolation and sequence of the gene for actin in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 77:3912–3916.
  • Niedenthal, R., R. Stoll, and J. H. Hegemann. 1991. In vivo characterization of the Saccharomyces cerevisiae centromere DNA element I, a binding site for the helix-loop-helix protein CPFI. Mol. Cell. Biol. 11:3545–3553.
  • O'Connell, K. F., and R. E. Baker. 1992. Possible cross-regulation of phosphate and sulfate metabolism in Saccharomyces cerevisiae. Genetics 132:63–73.
  • Ogawa, N., and Y. Oshima. 1990. Functional domains of a positive regulatory protein, PHO4, for transcriptional control of the phosphatase regulon in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2224–2236.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics. A laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Rothstein, R. 1991. Targeting, disruption, replacement, and allele rescue: integrative DNA transformation in yeast. Methods Enzymol. 194:281–301.
  • Schiestl, R. H., and R. D. Gietz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16:339–346.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Thomas, D., R. Barbey, and Y. Surdin-Kerjan. 1990. Gene-enzyme relationship in the sulfate assimilation pathway of Saccharomyces cerevisiae. J. Biol. Chem. 265:15518–15524.
  • Thomas, D., H. Cherest, and Y. Surdin-Kerjan. 1989. Elements involved in S-adenosylmethionine-mediated regulation of the Saccharomyces cerevisiae MET25 gene. Mol. Cell. Biol. 9:3292–3298.
  • Thomas, D., I. Jacquemin, and Y. Surdin-Kerjan. 1992. MET4, a leucine zipper protein, and centromere-binding factor 1 are both required for transcriptional activation of sulfur metabolism in Saccharomyces cerevisiae. Mol. Cell. Biol. 12:1719–1727.
  • Toh-e, A. 1989. Phosphorus regulation in yeast, p. 41–52. In P. J. Barr, A. J. Brake, and P. Valenzuela (ed.), Yeast genetic engineering. Butterworth Publishers, Stoneham, Mass.
  • Wu, C. 1980. The 59 ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase I. Nature (London) 286:854–860.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.