3
Views
147
CrossRef citations to date
0
Altmetric
Research Article

The Orphan Receptor Hepatic Nuclear Factor 4 Functions as a Transcriptional Activator for Tissue-Specific and Hypoxia-Specific Erythropoietin Gene Expression and Is Antagonized by EAR3/COUP-TF1

, , , , , & show all
Pages 2135-2144 | Received 09 Aug 1994, Accepted 19 Jan 1995, Published online: 30 Mar 2023

REFERENCES

  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1991. Current protocols in molecular biology. John Wiley & Sons, New York.
  • Baes, M., T. Gulick, H.-S. Choi, M. G. Martinoli, D. Simha, and D. D. Moore. 1993. A new orphan member of the nuclear receptor superfamily that interacts with a subset of retinoic response elements. Mol. Cell. Biol. 14:1544–1552.
  • Beck, I., S. Ramirez, R. Weinmann, and J. Caro. 1991. Enhancer element at the 39-flanking region controls transcriptional response to hypoxia in the human erythropoietin gene. J. Biol. Chem. 266:15563–15566.
  • Beck, I., R. Weinmann, and J. Caro. 1993. Characterization of hypoxia-responsive enhancer in the human erythropoietin gene shows presence of hypoxia-inducible 120-Kd nuclear DNA-binding protein in erythropoietin-producing and nonproducing cells. Blood 82:704–711.
  • Blanchard, K. L., A. M. Acquaviva, D. L. Galson, and H. F. Bunn. 1992. Hypoxic induction of the human erythropoietin gene: cooperation between the promoter and enhancer, each of which contains steroid receptor response elements. Mol. Cell. Biol. 12:5373–5385.
  • Chang, C., and J. Kokontis. 1988. Identification of a new member of the steroid receptor super-family by cloning and sequence analysis. Biochem. Biophys. Res. Commun. 155:971–977.
  • Chang, C., J. Kokontis, L. Acakpo-Satchiv, S. Liao, H. Takeda, and Y. Chang. 1989. Molecular cloning of new human TR2 receptors: a class of steroid receptor with multiple ligand-binding domains. Biochem. Biophys. Res. Commun. 165:735–741.
  • Cooney, A. J., S. Y. Tsai, B. W. O'Malley, and M.-J. Tsai. 1992. Chicken ovalbumin upstream promoter transcription factor (COUP-TF) dimers bind to different GGTCA response elements, allowing COUP-TF to repress hormonal induction of the vitamin D3, thyroid hormone, and retinoic acid receptors. Mol. Cell. Biol. 12:4153–4163.
  • Curtin, P. T., C. Lin, and A. Madan. 1993. Kidney-specific expression of the human erythropoietin gene requires more than 9.5 Kb of 59 flanking sequence. Blood 82:224a.
  • deWett, J. R., K. V. Wood, M. DeLuca, D. R. Helinski, and S. Subramani. 1987. Firefly luciferase gene: structure and expression in mammalian cells. Mol. Cell. Biol. 7:725–737.
  • Dignam, J. D., R. M. Lebovitz, and R. G. Roeder. 1983. Accurate transcription initiation by RNA polymerase II in a soluble extract from isolated mammalian nuclei. Nucleic Acids Res. 11:1475–1489.
  • Evans, R. M. 1988. The steroid and thryroid hormone superfamily. Science 240:889–895.
  • Galson, D. L., and Y. Ren. Unpublished data.
  • Giguere, V., M. Tini, G. Flock, E. Ong, R. M. Evans, and G. Otnlakowski. 1994. Isoform-specific amino-terminal domains dictate DNA-binding properties of RORα, a novel family of orphan receptors. Genes Dev. 8:538–553.
  • Glass, C. K., J. DiRenzo, R. Kurokawa, and Z. Han. 1991. Regulation of gene expression by retinoic acid receptors. DNA Cell Biol. 10:623–638.
  • Goldberg, M., C. C. Gaut, and H. F. Bunn. 1991. Erythropoietin mRNA levels are governed by both the rate of gene transcription and post-transcriptional events. Blood 77:271–277.
  • Goldberg, M. A., G. A. Glass, J. M. Cunningham, and H. F. Bunn. 1987. The regulated expression of erythropoietin by two human hepatoma cell lines. Proc. Natl. Acad. Sci. USA 84:7972–7976.
  • Ho, V., T. Acquaviva, E. Duh, and H. F. Bunn. Use of a marked erythropoietin gene for investigation of its cis-acting elements. J. Biol. Chem., in press.
  • Imagawa, S., M. A. Goldberg, J. Doweiko, and H. F. Bunn. 1991. Regulatory elements of the erythropoietin gene. Blood 77:278–285.
  • Jacobs, K., C. Shoemaker, R. Rudersdorf, S. D. Neill, R. J. Kaufman, A. Mufson, J. Seehra, S. S. Jones, R. Hewick, E. F. Fritsch, M. Kawakita, T. Shimizu, and T. Miyake. 1985. Isolation and characterization of genomic and cDNA clones of human erythropoietin. Nature (London) 313:806–810.
  • Jelkmann, W. 1992. Erythropoietin: structure, control of production, and function. Physiol. Rev. 72:449–489.
  • Kimura, A., A. Nishiyori, T. Murakami, T. Tsukamoto, S. Hata, T. Osumi, R. Okamura, M. Mori, and M. Takiguchi. 1993. Chicken ovalbumin upstream promoter-transcription factor (COUP-TF) represses transcription from the promoter of the gene for ornithine transcarbamylase in a manner antagonistic to hepatocyte nuclear factor-4 (HNF-4). J. Biol. Chem. 268:11125–11133.
  • Kliewer, S. A., K. Umesono, R. A. Heyman, D. J. Mangelsdorf, J. A. Dyck, and R. M. Evans. 1992. Retinoid X receptor-COUP-TF interactions modulate retinoic acid signaling. Proc. Natl. Acad. Sci. USA 89:1448–1452.
  • Kliewer, S. A., K. Umesono, D. J. Mangelsdorf, and R. M. Evans. 1992. Retinoid X receptor interacts with nuclear receptors in retinoic acid, thyroid hormone and vitamin D3 signalling. Nature (London) 355:446–449.
  • Kliewer, S. A., K. Umesono, D. J. Noonan, R. A. Heyman, and R. M. Evans. 1992. Convergence of 9-cis retinoic acid and peroxisome proliferator signalling pathways through heterodimer formation of their receptors. Nature (London) 358:771–774.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Ladias, J. A. A., M. Hadzopoulou-Cladaras, D. Kardassis, P. Chadot, J. Cheng, V. Zannis, and C. Cladaras. 1992. Transcriptional regulation of human apolipoprotein genes ApoB, ApoCIII, and ApoAII by members of the steroid hormone receptor superfamily HNF-4, ARP-1, EAR-2, and EAR-3. J. Biol. Chem. 267:15849–15860.
  • Ladias, J. A. A., and S. K. Karathanasis. 1991. Regulation of the apoli-poprotein A1 gene by ARP-1, a novel member of the steroid receptor superfamily. Science 251:561–565.
  • Lin, F.-K., S. Suggs, C.-H. Lin, J. K. Browne, R. Smalling, J. C. Egrie, K. K. Chen, G. M. Fox, F. Martin, Z. Stabinsky, S. M. Badrawi, P.-H. Lai, and E. Goldwasser. 1985. Cloning and expression of the human erythropoietin gene. Proc. Natl. Acad. Sci. USA 82:7580–7584.
  • Madan, A., and P. T. Curtin. 1993. A 24-base-pair sequence 39 to the human erythropoietin gene contains a hypoxia-responsive transcriptional enhancer. Proc. Natl. Acad. Sci. USA 90:3928–3932.
  • Maxwell, P. H., C. W. Pugh, and P. J. Ratcliffe. 1993. Inducible operation of the erythropoietin 39 enhancer in multiple cell lines: evidence for a widespread oxygen-sensing mechanism. Proc. Natl. Acad. Sci. USA 90:2423–2427.
  • Mietus-Synder, M., F. M. Sladek, G. S. Ginsburg, C. F. Kuo, J. A. Ladias, J. E. Darnell, Jr., and S. K. Karathanasis. 1992. Antagonism between apo-lipoprotein AI regulatory protein 1, Ear3/COUP-TF, and hepatocyte nuclear factor 4 modulates apolipoprotein CIII gene expression in liver and intestinal cells. Mol. Cell. Biol. 12:1708–1718.
  • Miyajima, N., Y. Kadowaki, S. Fukushige, S. Shimizu, K. Semba, Y. Yama-nashi, K. Matsubara, K. Toyoshima, and T. Yamamoto. 1988. Identification of two novel members of erbA superfamily by molecular cloning: the gene products of the two are highly related to each other. Nucleic Acids Res. 16:11057–11074.
  • Miyata, K. S., B. Zhang, S. L. Marcus, J. P. Capone, and R. A. Rachubinski. 1993. Chicken ovalbumin upstream promoter transcription factor (COUP-TF) binds to a peroxisome proliferator-responsive element and antagonizes peroxisome proliferator-mediated signaling. J. Biol. Chem. 268:19169–19172.
  • Nakshatri, H., and P. Chambon. 1994. The directly repeated RG(G/T)TCA motifs of the rat and mouse cellular retinol-binding protein II genes are promiscuous binding sites for RAR, RXR, HNF-4, AND ARP-1 homo- and heterodimers. J. Biol. Chem. 269:890–902.
  • Nordeen, S. K. 1988. Luciferase reporter gene vectors for analysis of promoters and enhancers. BioTechniques 6:454–457.
  • Porter, D. L., and M. A. Goldberg. 1993. Regulation of erythropoietin production. Exp. Hematol. 21:399–404.
  • Pugh, C. W., C. C. Tan, R. W. Jones, and P. J. Ratcliffe. 1991. Functional analysis of an oxygen-regulated transcriptional enhancer lying 39 to the mouse erythropoietin gene. Proc. Natl. Acad. Sci. USA 88:10553–10557.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Schuster, S. J., E. V. Badiavas, P. Costa-Giomi, R. Weinman, A. J. Erslev, and J. Caro. 1989. Stimulation of erythropoietin gene transcription during hypoxia and cobalt exposure. Blood 73:13–16.
  • Semenza, G., and G. L. Wang. 1992. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin enhancer at a site required for transcriptional activation. Mol. Cell. Biol. 12:5447–5454.
  • Semenza, G. L., R. C. Dureza, M. D. Traystman, J. D. Gearhart, and S. E. Antonarakis. 1990. Human erythropoietin gene expression in transgenic mice: multiple transcription initiation sites and cis-acting regulatory elements. Mol. Cell. Biol. 10:930–938.
  • Semenza, G. L., S. T. Koury, M. K. Nejfelt, J. D. Gearhart, and S. E. Antonarakis. 1991. Cell-type-specific and hypoxia-inducible expression of the human erythropoietin gene in transgenic mice. Proc. Natl. Acad. Sci. USA 88:8725–8729.
  • Semenza, G. L., M. K. Nejfelt, S. M. Chi, and S. E. Antonarakis. 1991. Hypoxia-inducible nuclear factors bind to an enhancer element located 39 to the human erythropoietin gene. Proc. Natl. Acad. Sci. USA 88:5680–5684.
  • Semenza, G. L., M. Trystman, J. D. Gearhart, and S. Antonarakis. 1989. Polycythemia in transgenic mice expressing the human erythropoietin gene. Proc. Natl. Acad. Sci. USA 86:2301–2305.
  • Shapiro, D. J., P. A. Sharp, W. W. Wahli, and M. J. Keller. 1988. A high-efficiency HeLa nuclear transcription extract. DNA 7:47–55.
  • Sladek, F. M. 1993. Orphan receptor HNF-4 and liver-specific gene expression. Receptor 3:223–232.
  • Sladek, F. M. 1994. Hepatocyte nuclear factor 4 (HNF-4). In F. Tronche, and M. Yaniv (ed.), Transcriptional regulation of liver-specific genes, in press. R. G. Landes Co., Austin, Tex.
  • Sladek, F. M., W. Zhong, E. Lai, and J. E. Darnell, Jr. 1990. Liver-enriched transcription factor HNF-4 is a novel member of the steroid hormone receptor superfamily. Genes Dev. 4:2353–2365.
  • Thomas, H. E., H. G. Stunnenberg, and A. F. Stewart. 1993. Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle. Nature (London) 362:471–474.
  • Tran, P., X. K. Zhang, G. Salbert, T. Hermann, J. M. Lehrmann, and M. Pfahl. 1992. COUP orphan receptors are negative regulators of retinoic acid response pathways. Mol. Cell. Biol. 12:4666–4676.
  • Umesono, K., K. K. Murakami, C. C. Thompson, and R. M. Evans. 1991. Direct repeats as selective response elements for the thyroid hormone, retinoic acid, and vitamin D3 receptors. Cell 65:1255–1266.
  • Wahli, W., and E. Martinez. 1991. Superfamily of steroid nuclear receptors: positive and negative regulators of gene expression. FASEB J. 5:2243–2249.
  • Wang, G. L., and G. L. Semenza. 1993. Characterization of hypoxia-inducible factor 1 and regulation of DNA binding activity by hypoxia. J. Biol. Chem. 268:21513–21518.
  • Wang, G. L., and G. L. Semenza. 1993. General involvement of hypoxia-inducible factor 1 in transcriptional response to hypoxia. Proc. Natl. Acad. Sci. USA 90:4304–4308.
  • Yu, V. C., C. Deisert, B. Anderson, J. M. Holloway, O. V. Devary, A. M. Naär, S. Y. Kim, J. M. Boutin, C. K. Glass, and M. G. Rosenfeld. 1991. RXRβ: a coregulator that enhances binding of retinoic acid, thyroid hormone, and vitamin D receptors to their cognate response elements. Cell 67:1251–1266.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.