8
Views
168
CrossRef citations to date
0
Altmetric
Research Article

RAD1 and RAD10, but Not Other Excision Repair Genes, Are Required for Double-Strand Break-Induced Recombination in Saccharomyces cerevisiae

&
Pages 2245-2251 | Received 07 Dec 1994, Accepted 16 Jan 1995, Published online: 30 Mar 2023

REFERENCES

  • Alani, E., L. Cao, and N. Kleckner. 1987. A method for gene disruption that allows repeated use of a URA3 selection in the construction of multiply disrupted yeast strains. Cell 116:541–545.
  • Bailis, A. M., L. Arthur, and R. Rothstein. 1992. Genome rearrangement in top3 mutants of Saccharomyces cerevisiae requires a functional RAD1 excision repair gene. Mol. Cell. Biol. 12:4988–4993.
  • Bailly, V., C. H. Sommers, P. Sung, L. Prakash, and S. Prakash. 1992. Specific complex formation between proteins encoded by the yeast DNA repair and recombination genes RAD1 and RAD10. Proc. Natl. Acad. Sci. USA 89:8273–8277.
  • Bang, D., R. Verhage, N. Goosen, J. Brouwer, and P. van de Putte. 1992. Molecular cloning of RAD16, a gene involved in differential repair in Saccharomyces cerevisiae. Nucleic Acids Res. 20:3925–3931.
  • Bardwell, A. J., L. Bardwell, N. Iyer, J. Q. Svejstrup, W. J. Feaver, R. D. Kornberg, and E. C. Friedberg. 1994. Yeast nucleotide excision repair proteins Rad2 and Rad4 interact with RNA polymerase II basal transcription factor b (TFIIH). Mol. Cell. Biol. 14:3569–3576.
  • Bardwell, A. J., L. Bardwell, D. K. Johnson, and E. C. Friedberg. 1993. Yeast DNA recombination and repair proteins Rad1 and Rad10 constitute a complex in vivo mediated by localized hydrophobic domains. Mol. Microbiol. 8:1177–1188.
  • Bardwell, A. J., L. Bardwell, A. E. Tomkinson, and E. C. Friedberg. Specific cleavage of model recombination and repair intermediates by the yeast Rad1/Rad10 DNA endonuclease. Science 265:2082–2085.
  • Bardwell, L., A. J. Cooper, and E. C. Friedberg. 1992. Stable and specific association between the yeast recombination and DNA repair proteins RAD1 and RAD10 in vitro. Mol. Cell. Biol. 12:3041–3049.
  • Biggerstaff, M., D. E. Szymkowski, and R. D. Wood. 1993. Co-correction of the ERCC1, ERCC4 and xeroderma pigmentosum group F DNA repair defects in vitro. EMBO J. 12:3685–3692.
  • Boeke, J. D., F. LaCroute, and G. R. Fink. 1984. A positive selection for mutants lacking orotidine-59-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Mol. Gen. Genet. 197:345–346.
  • Church, G. M., and W. Gilbert. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81:1991–1995.
  • Feaver, W. J., J. Q. Svejstrup, L. Bardwell, A. J. Bardwell, S. Buratowski, K. D. Gulyas, T. F. Donahue, E. C. Friedberg, and R. D. Kornberg. 1993. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 75:1379–1387.
  • Feinberg, A. P., and B. Vogelstein. 1984. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 137:266–267.
  • Fishman-Lobell, J., and J. E. Haber. 1992. Removal of nonhomologous DNA ends in double-strand break recombination: the role of the yeast ultraviolet repair gene RAD1. Science 258:480–484.
  • Fishman-Lobell, J., N. Rudin, and J. E. Haber. 1992. Two alternative pathways of double-strand break repair that are kinetically separable and independently modulated. Mol. Cell. Biol. 12:1292–1303.
  • Fleer, R., W. Siede, and E. C. Friedberg. 1987. Mutational inactivation of the Saccharomyces cerevisiae RAD4 gene in Escherichia coli. J. Bacteriol. 169: 4884–4892.
  • Gulyas, K., and T. F. Donahue. 1992. SSL2, a suppressor of a stem-loop mutation in the HIS4 leader encodes the yeast homolog of human ERCC-3. Cell 69:1031–1042.
  • Guzder, S. N., H. Qiu, C. H. Sommers, P. Sung, L. Prakash, and S. Prakash. 1994. DNA repair gene RAD3 of S. cerevisiae is is essential for transcription by RNA polymerase II. Nature (London) 367:91–94.
  • Guzder, S. N., P. Sung, V. Bailly, L. Prakash, and S. Prakash. 1994. RAD25 is a DNA helicase required for DNA repair and RNA polymerase II transcription. Nature (London) 369:578–581.
  • Guzder, S. N., P. Sung, L. Prakash, and S. Prakash. 1993. Yeast DNA-repair gene RAD14 encodes a zinc metalloprotein with affinity for ultraviolet-damaged DNA. Proc. Natl. Acad. Sci. USA 90:5433–5437.
  • Haber, J. E. 1992. Exploring the pathways of homologous recombination. Curr. Opin. Cell Biol. 4:401–412.
  • Habraken, Y., P. Sung, L. Prakash, and S. Prakash. 1993. Yeast excision repair gene RAD2 encodes a single-stranded DNA endonuclease. Nature (London) 366:365–368.
  • Habraken, Y., P. Sung, L. Prakash, and S. Prakash. 1994. Holliday junction cleavage by yeast Rad1 protein. Nature (London) 371:531–534.
  • Habraken, Y., P. Sung, L. Prakash, and S. Prakash. 1994. Human xero-derma pigmentosum group G gene encodes a DNA endonuclease. Nucleic Acids Res. 22:3312–3316.
  • Harrington, J. J., and M. R. Lieber. 1994. Functional domains within FEN-1 and RAD2 define a family of structure-specific endonucleases: implications for nucleotide excision repair. Genes Dev. 8:1344–1355.
  • Ito, H., Y. Fukada, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Ivanov, E. L. Unpublished results.
  • Ivanov, E. L., N. Sugawara, C. I. White, F. Fabre, and J. E. Haber. 1994. Mutations in XRS2 and RAD50 delay but do not prevent mating-type switching in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:3414–3425.
  • Johnson, R. E., S. T. Henderson, T. D. Petes, S. Prakash, M. Bankmann, and L. Prakash. 1992. Saccharomyces cerevisiae RAD5-encoded DNA repair protein contains DNA helicase and zinc-binding sequence motifs and affects the stability of simple repetitive sequences in the genome. Mol. Cell. Biol. 12:3807–3818.
  • Klein, H. L. 1988. Different types of recombination events are controlled by the RAD1 and RAD52 genes of Saccharomyces cerevisiae. Genetics 120:367–377.
  • Kupiec, M. Personal communication.
  • McDonald, J. P., and R. Rothstein. 1994. Unrepaired heteroduplex DNA in Saccharomyces cerevisiae is decreased in RAD1 RAD52-independent recombination. Genetics 137:393–405.
  • Milne, G. T., and D. T. Weaver. 1993. Dominant negative alleles of RAD52 reveal a DNA repair/recombination complex including Rad51 and Rad52. Genes Dev. 7:1755–1765.
  • Naumovski, L., and E. C. Friedberg. 1983. A DNA repair gene required for the incision of damaged DNA is essential for viability in Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 80:4818–4821.
  • Nickoloff, J. A., E. Y. Chen, and F. Heffron. 1986. A 24-base-pair DNA sequence from the MAT locus stimulates intergenic recombination in yeast. Proc. Natl. Acad. Sci. USA 83:7831–7835.
  • O'Donovan, A., A. A. Davies, J. G. Moggs, S. C. West, and R. D. Wood. 1994. XPG endonuclease makes the 39 incision in human DNA nucleotide excision repair. Nature (London) 371:432–435.
  • Park, C.-H., and A. Sancar. 1994. Formation of a ternary complex by human XPA, ERCC1, and ERCC4(XPF) excision repair proteins. Proc. Natl. Acad. Sci. USA 91:5017–5021.
  • Park, E., S. N. Guzder, M. H. M. Koken, I. Jaspers-Dekker, G. Weeda, J. H. J. Hoeijmakers, S. Prakash, and L. Prakash. 1992. RAD25 (SSL2), the yeast homolog of the human xeroderma pigmentosum group B DNA repair gene, is essential for viability. Proc. Natl. Acad. Sci. USA 89:11416–11420.
  • Perozzi, G., and S. Prakash. 1986. RAD7 gene of Saccharomyces cerevisiae: transcripts, nucleotide sequence analysis and functional relationship between the RAD7 and RAD23 gene products. Mol. Cell. Biol. 6:1497–1506.
  • Prakash, S., P. Sung, and L. Prakash. 1993. DNA repair genes and proteins of Saccharomyces cerevisiae. Annu. Rev. Genet. 27:33–70.
  • Qiu, H., E. Park, L. Prakash, and S. Prakash. 1993. The Saccharomyces cerevisiae DNA repair gene RAD25 is required for transcription by RNA polymerase II. Genes Dev. 7:2161–2171.
  • Rattray, A. J., and L. S. Symington. 1994. Use of a chromosomal inverted repeat to demonstrate that the RAD51 and RAD52 genes of Saccharomyces cerevisiae have different roles in mitotic recombination. Genetics 138:587–595.
  • Rothstein, R. 1983. One step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Rudin, N., and J. E. Haber. 1988. Efficient repair of HO-induced chromosomal breaks in Saccharomyces cerevisiae by recombination between flanking homologous sequences. Mol. Cell. Biol. 8:3918–3928.
  • Saffran, W. A., R. B. Greenberg, M. S. Thaler-Scheer, and M. M. Jones. 1994. Single strand and double strand DNA damage-induced reciprocal recombination in yeast. Dependence on nucleotide excision repair and RAD1 recombination. Nucleic Acids Res. 22:2823–2829.
  • Scherly, D., T. Nouspikel, J. Corlet, C. Ucla, A. Bairoch, and S. G. Clarkson. 1993. Complementation of the DNA repair defect in xeroderma pigmento-sum group G cells by a human cDNA related to yeast RAD2. Nature (London) 363:182–185.
  • Schiestl, R. H., and S. Prakash. 1988. RAD1, an excision repair gene of Saccharomyces cerevisiae, is also involved in recombination. Mol. Cell. Biol. 8:3619–3626.
  • Schiestl, R. H., and S. Prakash. 1990. RAD10, an excision repair gene of Saccharomyces cerevisiae, is involved in the RAD1 pathway of mitotic recombination. Mol. Cell. Biol. 10:2485–2491.
  • Schild, D., B. J. Glassner, R. K. Mortimer, M. Carlson, and B. C. Laurent. 1992. Identification of RAD16, a yeast excision repair gene homologous to the recombinational repair gene RAD54 and to the SNF2 gene involved in transcriptional activation. Yeast 8:385–395.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Methods in yeast genetics: laboratory manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Shinohara, A., H. Ogawa, and T. Ogawa. 1992. Rad51 protein involved in repair and recombination in S. cerevisiae is a RecA-like protein. Cell 69:457–470.
  • Singer, M. F. 1982. Highly repeated sequences in mammalian genomes. Int. Rev. Cytol. 76:67–112.
  • Sugawara, N., and J. E. Haber. 1992. Characterization of double-strand break induced recombination: homology requirements and single-stranded DNA formation. Mol. Cell. Biol. 12:563–575.
  • Sugawara, N., E. L. Ivanov, J. Fishman-Lobell, B. L. Ray, X. Wu, and J. E. Haber. 1995. DNA structure-dependent requirements for yeast RAD genes in gene conversion. Nature (London) 373:84–86.
  • Sung, P., L. Prakash, S. W. Matson, and S. Prakash. 1987. RAD3 protein of Saccharomyces cerevisiae is a DNA helicase. Proc. Natl. Acad. Sci. USA 84:8951–8955.
  • Sung, P., L. Prakash, and P. Prakash. 1992. Renaturation of DNA catalysed by yeast DNA repair and recombination protein RAD10. Nature (London) 355:743–745.
  • Sung, P., P. Reynolds, L. Prakash, and S. Prakash. 1993. Purification and characterization of the Saccharomyces cerevisiae RAD1/RAD10 endonucle-ase. J. Biol. Chem. 268:26391–26399.
  • Szostak, J. W., T. L. Orr-Weaver, R. J. Rothstein, and F. W. Stahl. 1983. The double-strand-break repair model for recombination. Cell 33:25–35.
  • Thomas, B. J., and R. Rothstein. 1989. The genetic control of direct-repeat recombination in Saccharomyces: the effect of rad52 and rad1 on mitotic recombination at GAL10, a transcriptionally regulated gene. Genetics 123: 725–738.
  • Tomkinson, A. E., A. J. Bardwell, L. Bardwell, N. J. Tappe, and E. C. Friedberg. 1993. Yeast DNA repair and recombination proteins Rad1 and Rad10 constitute a single-stranded-DNA endonuclease. Nature (London) 362:860–862.
  • Tomkinson, A. E., A. J. Bardwell, N. Tappe, W. Ramos, and E. C. Friedberg. 1994. Purification of Rad1 protein from Saccharomyces cerevisiae and further characterization of the Rad1/Rad10 endonuclease complex. Biochemistry 33:5305–5211.
  • van Duin, M., J. de Wit, H. Odijk, A. Westerveld, A. Yasui, M. H. M. Koken, J. H. J. Hoeijmakers, and D. Bootsma. 1986. Molecular characterization of the human excision repair gene ERCC-1: cDNA cloning and amino acid homology with the yeast DNA repair gene RAD10. Cell 44:913–923.
  • van Vuuren, A. J., E. Appeldoorn, H. Odijk, A. Yasui, N. G. J. Jaspers, D. Bootsma, and J. H. J. Hoeijmakers. 1993. Evidence for a repair enzyme complex involving ERCC1 and complementing activities of ERCC4, ERCC11 and xeroderma pigmentosum group F. EMBO J. 12:3693–3701.
  • Verhage, R., A.-M. Zeeman, N. de Groot, F. Gleig, D. D. Bang, P. van de Putte, and J. Brouwer. 1994. The RAD7 and RAD16 genes, which are essential for pyrimidine dimer removal from the silent mating type loci, are also required for repair of the nontranscribed strand of an active gene in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:6135–6142.
  • Weiss, W. A., and E. C. Friedberg. 1985. Molecular cloning and characterization of the yeast RAD10 gene and expression of RAD10 protein in E. coli. EMBO J. 4:1575–1582.
  • West, S. C. 1995. Holliday junctions cleaved by Rad1? Nature (London) 373:27–28.
  • Zehfus, B. R., A. D. McWilliams, Y. H. Lin, M. F. Hoekstra, and R. L. Keil. 1990. Genetic control of RNA polymerase I stimulated recombination in yeast. Genetics 126:41–52.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.