0
Views
30
CrossRef citations to date
0
Altmetric
Research Article

The Unique Amino-Terminal Domain of p56lck Regulates Interactions with Tyrosine Protein Phosphatases in T Lymphocytes

&
Pages 2393-2401 | Received 30 Dec 1994, Accepted 06 Feb 1995, Published online: 30 Mar 2023

REFERENCES

  • Abraham, N., M. C. Miceli, J. C. Parnes, and A. Veillette. 1991. Enhancement of T-cell responsiveness by the lymphocyte-specific tyrosine protein kinase p56lck. Nature (London) 350:62–66.
  • Abraham, N., and A. Veillette. 1990. Activation of p56lck through mutation of a regulatory carboxy-terminal tyrosine residue requires intact sites of my-ristylation and autophosphorylation. Mol. Cell. Biol. 10:5197–5206.
  • Albritton, L. M., L. Tseng, D. Scadden, and J. M. Cunningham. 1989. A putative murine ecotropic retrovirus receptor gene encodes a multiple mem brane-spanning protein and confers susceptibility to virus infection. Cell 57:659–666.
  • Amrein, K., and B. M. Sefton. 1988. Mutation of a site of tyrosine phosphor-ylation in the lymphocyte-specific tyrosine protein kinase, p56lck, reveals its oncogenic potential in fibroblasts. Proc. Natl. Acad. Sci. USA 85:4247–4251.
  • Appleby, M. W., J. A. Gross, M. P. Cooke, S. D. Levin, X. Qian, and R. M. Perlmutter. 1992. Defective T cell receptor signaling in mice lacking the thymic isoform of p59fynT. Cell 70:751–763.
  • Bergman, M., T. Mustelin, C. Oetken, J. Partanen, N. A. Flint, K. E. Amrein, M. Autero, P. Burn, and K. Alitalo. 1992. The human p50csk tyrosine kinase phosphorylates p56lck at Tyr-505 and down regulates its catalytic activity. EMBO J. 11:2919–2924.
  • Burns, C. M., K. Sakaguchi, E. Appella, and J. D. Ashwell. 1994. CD45 regulation of tyrosine phosphorylation and enzyme activity of src family kinases. J. Biol. Chem. 269:13594–13600.
  • Cahir McFarland, E. D., T. R. Hurley, J. T. Pingel, B. M. Sefton, A. Shaw, and M. L. Thomas. 1993. Correlation between Src family member regulation by the protein-tyrosine-phosphatase CD45 and transmembrane signaling through the T-cell receptor. Proc. Natl. Acad. Sci. USA 90:1402–1406.
  • Carrera, A. C., K. Alexandrov, and T. M. Roberts. 1993. The conserved lysine of the catalytic domain of protein kinases is actively involved in the phosphotransfer reaction and not required for anchoring ATP. Proc. Natl. Acad. Sci. USA 90:442–446.
  • Cartier, M., M. W. M. Chang, and C. P. Stanners. 1987. The use of the Escherichia coli gene for asparagine synthetase as a selectable marker in a shuttle vector capable of dominant transfection and amplification in animal cells. Mol. Cell. Biol. 7:1623–1628.
  • Chow, L. M. L., M. Fournel, D. Davidson, and A. Veillette. 1993. Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk. Nature (London) 365:156–160.
  • Cooke, M. P., and R. M. Perlmutter. 1989. Expression of a novel form of the fyn proto-oncogene in hemopoietic cells. New Biol. 1:66–74.
  • Cooper, J. A. 1990. The src family of protein-tyrosine kinases, p. 85–113. In B. E. Kemp (ed.), Peptides and protein phosphorylation. CRC Press, Boca Raton, Fla.
  • Cooper, J. A., and B. Howell. 1993. The when and how of Src regulation. Cell 73:1051–1054.
  • Davidson, D., L. M. L. Chow, M. Fournel, and A. Veillette. 1992. Differential regulation of T cell antigen responsiveness by isoforms of the src-related tyrosine protein kinase p59fyn. J. Exp. Med. 175:1483–1492.
  • Davidson, D., M. Fournel, and A. Veillette. 1994. Oncogenic activation of p59fyn tyrosine protein kinase by mutation of its carboxyl-terminal site of tyrosine phosphorylation, tyrosine 528. J. Biol. Chem. 269:10956–10963.
  • Fournel, M., and A. Veillette. 1994. Unpublished data.
  • Gervais, F. G., L. M. L. Chow, J. M. Lee, P. E. Branton, and A. Veillette. 1993. The SH2 domain is required for stable phosphorylation of p56lck at tyrosine 505, the negative regulatory site. Mol. Cell. Biol. 13:7112–7121.
  • Hurley, T. R., R. Hyman, and B. M. Sefton. 1993. Differential effects of expression of the CD45 tyrosine protein phosphatase on the tyrosine phos-phorylation of the lck, fyn, and c-src tyrosine protein kinases. Mol. Cell. Biol. 13:1651–1656.
  • Koretzky, G. A., M. Kohmetscher, and S. Ross. 1993. CD45-associated kinase activity requires Lck but not T cell receptor expression in Jurkat T cell lines. J. Biol. Chem. 268:8958–8964.
  • Koretzky, G. A., J. Picus, M. L. Thomas, and A. Weiss. 1990. Tyrosine phosphatase CD45 is essential for coupling T-cell antigen receptor to the phosphatidyl inositol pathway. Nature (London) 346:66–68.
  • Kunkel, T. 1985. Rapid and efficient site-specific mutagenesis without phe-notypic selection. Proc. Natl. Acad. Sci. USA 82:488–492.
  • Luo, K., and B. M. Sefton. 1990. Analysis of the sites in p56lck whose phosphorylation is induced by tetradecanoyl phorbol acetate. Oncogene 5:803–808.
  • Marth, J. D., J. A. Cooper, C. S. King, S. F. Ziegler, D. A. Tinker, R. W. Overell, E. G. Krebs, and R. M. Perlmutter. 1988. Neoplastic transformation induced by an activated lymphocyte-specific protein tyrosine kinase (pp56lck). Mol. Cell. Biol. 8:540–550.
  • Marth, J. D., R. Peet, E. G. Krebs, and R. M. Perlmutter. 1985. A lymphocyte-specific protein tyrosine kinase gene is rearranged and overexpressed in the murine T cell lymphoma LSTRA. Cell 43:393–404.
  • Miller, A. D., and G. J. Rosman. 1989. Improved retroviral vectors for gene transfer and expression. BioTechniques 7:980–990.
  • Nada, S., M. Okada, A. MacAuley, J. A. Cooper, and H. Nakagawa. 1991. Cloning of a complementary DNA for a protein-tyrosine kinase that specifically phosphorylates a negative regulatory site of p60c-src. Nature (London) 351:69–72.
  • Ostergaard, H. L., D. A. Shackelford, T. R. Hurley, P. Johnson, R. Hyman, B. Sefton, and I. S. Trowbridge. 1989. Expression of CD45 alters phosphor-ylation of the lck encoded tyrosine protein kinase in murine lymphoma T-cell lines. Proc. Natl. Acad. Sci. USA 86:8959–8963.
  • Pawson, T., and G. D. Gish. 1992. SH2 and SH3 domains: from structure to function. Cell 71:359–362.
  • Peri, K. G., F. Gervais, R. Weil, D. Davidson, G. D. Gish, and A. Veillette. 1993. Interactions of SH2 domain of lymphocyte-specific tyrosine protein kinase p56lck with phosphotyrosine-containing proteins. Oncogene 8:2765–2772.
  • Perlmutter, R. M., S. D. Levin, M. W. Appleby, S. J. Anderson, and J. Alberola-Ila. 1993. Regulation of lymphocyte function by protein phosphor-ylation. Annu. Rev. Biochem. 11:451–499.
  • Pingel, J. T., and M. L. Thomas. 1989. Evidence that the leukocyte-common antigen is required for antigen-induced T lymphocyte proliferation. Cell 58:1055–1065.
  • Resh, M. D. 1994. Myristylation and palmitylation of Src family members: the fats of the matter. Cell 76:411–413.
  • Reske-Kunz, A. B., and E. Rüde. 1985. Insulin-specific T cell hybridomas derived from (H-2b 3 H-2k) F1 mice preferably employ F1-unique restriction elements for antigen recognition. Eur. J. Immunol. 15:1048–1054.
  • Rudd, C. E., J. M. Trevillyan, J. D. Dasgupta, L. L. Wong, and S. F. Schlossman. 1988. The CD4 receptor is complexed in detergent lysates to a protein-tyrosine kinase (pp58) from human T lymphocytes. Proc. Natl. Acad. Sci. USA 85:5190–5194.
  • Samelson, L. E., and R. D. Klausner. 1992. Tyrosine kinases and tyrosine-based activation motifs. Current research on activation via the T cell antigen receptor. J. Biol. Chem. 267:24913–24916.
  • Schraven, B., H. Kirchgessner, B. Gaber, Y. Samstag, and S. Meuer. 1991. A functional complex is formed in human T lymphocytes between the protein tyrosine phosphatase CD45, the protein tyrosine kinase p56lck and pp32, a possible common substrate. Eur. J. Immunol. 10:2469–2477.
  • Shaw, A. S., K. E. Amrein, C. Hammond, D. F. Stern, B. M. Sefton, and J. K. Rose. 1989. The Lck tyrosine protein kinase interacts with the cytoplasmic tail of the CD4 glycoprotein through its unique amino-terminal domain. Cell 59:627–636.
  • Shaw, A. S., J. Chalupny, J. A. Whitney, C. Hammond, K. E. Amrein, P. Kavathas, B. M. Sefton, and J. K. Rose. 1990. Short related sequences in the cytoplasmic domains of CD4 and CD8 mediate binding to the amino-terminal domain of the p56lck tyrosine protein kinase. Mol. Cell. Biol. 10:1853–1862.
  • Shenoy-Scaria, A. M., L. K. Timson Gauen, J. Kwong, A. S. Shaw, and D. M. Lublin. 1993. Palmitylation of an amino-terminal cysteine motif of protein tyrosine kinases p56lck and p59fyn mediates interaction with glycosyl-phos-phatidylinositol-anchored proteins. Mol. Cell. Biol. 13:6385–6392.
  • Sieh, M., J. B. Bolen, and A. Weiss. 1993. CD45 specifically modulates binding of Lck to a phosphopeptide encompassing the negative regulatory tyrosine of Lck. EMBO J. 12:315–321.
  • Soula, M., B. Rothhut, L. Camoin, J. L. Guillaume, D. Strosberg, T. Vorherr, P. Burn, F. Meggio, S. Fischer, and R. Fagard. 1993. Anti-CD3 and phorbol ester induce distinct phosphorylated sites in the SH2 domain of p56lck. J. Biol. Chem. 268:27420–27427.
  • Stein, P. L., H.-M. Lee, S. Rich, and P. Soriano. 1992. pp59fyn mutant mice display differential signaling in thymocytes and peripheral T cells. Cell 70: 741–750.
  • Timson Gauen, L. K., A.-N. Tony Kong, L. E. Samelson, and A. S. Shaw. 1992. p59fyn tyrosine kinase associates with multiple T-cell receptor subunits through its unique amino-terminal domain. Mol. Cell. Biol. 12:5438–5446.
  • Turner, J. M., M. H. Brodsky, B. A. Irving, S. D. Levin, R. M. Perlmutter, and D. R. Littman. 1990. Interaction of the unique N-terminal region of tyrosine kinase p56lck with cytoplasmic domains of CD4 and CD8 is mediated by cysteine motifs. Cell 60:755–765.
  • Veillette, A., N. Abraham, L. Caron, and D. Davidson. 1991. The lymphocyte-specific tyrosine protein kinase p56lck. Sem. Immunol. 3:143–152.
  • Veillette, A., M. A. Bookman, E. M. Horak, and J. B. Bolen. 1988. The CD4 and CD8 T-cell surface antigens are associated with the internal membrane tyrosine-protein kinase p56lck. Cell 55:301–308.
  • Veillette, A., L. Caron, M. Fournel, and T. Pawson. 1992. Regulation of the enzymatic function of the lymphocyte-specific tyrosine protein kinase p56lck by the non-catalytic SH2 and SH3 domains. Oncogene 7:971–980.
  • Veillette, A., and D. Davidson. 1992. Src-related protein tyrosine kinases and T-cell receptor signalling. Trends Genet. 8:61–66.
  • Veillette, A., F. M. Foss, E. A. Sausville, J. B. Bolen, and N. Rosen. 1987. Expression of the lck tyrosine kinase gene in human colon carcinoma and other non-lymphoid human tumor cell lines. Oncogene Res. 1:357–374.
  • Veillette, A., I. D. Horak, and J. B. Bolen. 1988. Post-translational alterations of the tyrosine kinase p56lck in response to activators of protein kinase C. Oncogene Res. 2:385–401.
  • Volarevic, S., B. B. Niklinska, C. M. Burns, H. Yamada, C. H. June, F. J. Dumont, and J. D. Ashwell. 1992. The CD45 tyrosine phosphatase regulates phosphotyrosine homeostasis and its loss reveals a novel pattern of late T cell receptor-induced Ca21 oscillations. J. Exp. Med. 176:835–844.
  • Voronova, A. F., and B. M. Sefton. 1986. Expression of a new tyrosine protein kinase is stimulated by retrovirus promoter insertion. Nature (London) 319: 682–685.
  • Watts, J. D. M., J. S. Sanghera, S. L. Pelech, and R. Aebersold. 1993. Phosphorylation of serine 59 of p56lck in activated T cells. J. Biol. Chem. 258:23275–23282.
  • Weaver, C. T., J. T. Pingel, J. O. Nelson, and M. L. Thomas. 1991. CD81 T-cell clones deficient in the expression of the CD45 protein tyrosine phosphatase have impaired responses to T-cell receptor stimuli. Mol. Cell. Biol. 11:4415–4422.
  • Weil, R., and A. Veillette. 1994. Intramolecular and extramolecular mechanisms repress the catalytic function of p56lck in resting T-lymphocytes. J. Biol. Chem. 269:22830–22838.
  • Weiss, A., and D. R. Littman. 1994. Signal transduction by lymphocyte antigen receptors. Cell 76:263–294.
  • Winkler, D. G., I. Park, T. Kim, N. S. Payne, C. T. Walsh, J. L. Strominger, and J. Shin. 1993. Phosphorylation of ser-42 and ser-59 in the N-terminal region of the tyrosine kinase p56lck. Proc. Natl. Acad. Sci. USA 90:5176–5180.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.