25
Views
138
CrossRef citations to date
0
Altmetric
Research Article

A Heat Shock-Responsive Domain of Human HSF1 That Regulates Transcription Activation Domain Function

, , &
Pages 3354-3362 | Received 04 Nov 1994, Accepted 24 Mar 1995, Published online: 30 Mar 2023

REFERENCES

  • Abravaya, K., B. Phillips, and R. I. Morimoto. 1991. Attenuation of the heat shock response in HeLa cells is mediated by the release of bound heat shock transcription factor and is modulated by changes in growth and in heat shock temperatures. Genes Dev. 5:2117–2127.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl (ed.). 1989. Current protocols in molecular biology. John Wiley and Sons, New York.
  • Baler, R., W. J. Welch, and R. Voellmy. 1993. Activation of human heat shock genes is accompanied by oligomerization, modification, and rapid translocation of heat shock transcription factor HSF1. Mol. Cell. Biol. 13: 2486–2496.
  • Barbaris, A. Personal communication.
  • Brent, R., and M. Ptashne. 1985. A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell 43:729–736.
  • Fields, S., and O.-K. Song. 1989. A novel genetic system to detect protein-protein interactions. Nature (London) 340:245–246.
  • Gallo, G. J., T. J. Schuetz, and R. E. Kingston. 1991. Regulation of heat shock factor in Schizosaccharomyces pombe more closely resembles regulation in mammals than in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:281–288.
  • Greene, J. M., and R. E. Kingston. 1990. TATA-dependent and TATA-independent function of the basal and heat shock elements of a human hsp70 promoter. Mol. Cell. Biol. 10:1319–1328.
  • Greene, J. M., Z. Larin, I. C. A. Taylor, H. Prentice, K. A. Gwinn, and R. E. Kingston. 1987. Multiple basal elements of a human hsp70 promoter function differently in human and rodent cell lines. Mol. Cell. Biol. 7:3646–3655.
  • Gyuris, J., E. Golemis, H. Chertkov, and R. Brent. 1993. Cdi1, a human G1 and S phase protein phosphatase that associates with Cdk2. Cell 75:791–803.
  • Hensold, J. O., C. R. Hunt, S. K. Calderwood, D. E. Housman, and R. E. Kingston. 1990. DNA binding of heat shock factor to the heat shock element is insufficient for transcriptional activation in murine erythroleukemia cells. Mol. Cell. Biol. 10:1600–1608.
  • Herschlag, D., and F. B. Johnson. 1993. Synergism in transcriptional activation: a kinetic view. Genes Dev. 7:173–179.
  • Hoj, A., and B. K. Jakobsen. 1994. A short element required for turning off heat shock transcription factor: evidence that phosphorylation enhances deactivation. EMBO J. 13:2617–2624.
  • Jurivich, D. A., L. Sistonen, R. A. Kroes, and R. I. Morimoto. 1992. Effect of sodium salicylate on the human heat shock response. Science 255:1243–1245.
  • Kingston, R. E., T. J. Schuetz, and Z. Larin. 1987. Heat-inducible human factor that binds to a human hsp70 promoter. Mol. Cell. Biol. 7:1530–1534.
  • Larson, J. S., T. J. Schuetz, and R. E. Kingston. 1988. Activation in vitro of sequence-specific DNA binding by a human regulatory factor. Nature (London) 335:372–375.
  • Lee, K. A. W., A. Bindereif, and M. R. Green. 1988. A small-scale procedure for preparation of nuclear extracts that support efficient transcription and pre-mRNA splicing. Gene Anal. Tech. 5:22–31.
  • Lis, J., and C. Wu. 1993. Protein traffic on the heat shock promoter: parking, stalling, and trucking along. Cell 74:1–4.
  • McKnight, S. L., E. R. Gavis, R. Kingsbury, and T. Axel. 1981. Analysis of transcriptional regulatory signals of the HSV thymidine kinase gene: identification of an upstream control region. Cell 25:385–398.
  • Morimoto, R. I. 1993. Cells in stress: transcriptional activation of heat shock genes. Science 259:1409–1410.
  • Nakai, A., and R. I. Morimoto. 1993. Characterization of a novel chicken heat shock transcription factor, heat shock factor 3, suggests a new regula tory pathway. Mol. Cell. Biol. 13:1983–1997.
  • Nieto-Sotelo, J., G. Wiederrecht, A. Okuda, and C. S. Parker. 1990. The yeast heat shock transcription factor contains a transcriptional activation domain whose activity is repressed under nonshock conditions. Cell 62:807–817.
  • Perisic, O., H. Xiao, and J. T. Lis. 1989. Stable binding of Drosophila heat shock factor to head-to-head and tail-to-tail repeats of a conserved 5bp recognition unit. Cell 59:797–806.
  • Rabindran, S. K., G. Giorgi, J. Clos, and C. Wu. 1991. Molecular cloning and expression of a human heat shock factor, HSF1. Proc. Natl. Acad. Sci. USA 88:6906–6910.
  • Rabindran, S. K., R. I. Haroun, J. Clos, J. Wisniewski, and C. Wu. 1993. Regulation of heat shock factor trimer formation: role of a conserved leucine zipper. Science 259:230–234.
  • Ruden, D. M., J. Ma, Y. Li, K. Wood, and M. Ptashne. 1991. Generating yeast transcriptional activators containing no yeast protein sequences. Nature (London) 350:250–252.
  • Sadowski, I., and M. Ptashne. 1989. A vector for expressing GAL4(1-147) fusions in mammalian cells. Nucleic Acids Res. 17:7539.
  • Sarge, K. D., S. P. Murphy, and R. I. Morimoto. 1993. Activation of heat shock gene transcription by heat shock factor 1 involves oligomerization, acquisition of DNA-binding activity, and nuclear localization and can occur in the absence of stress. Mol. Cell. Biol. 13:1392–1407.
  • Sarge, K. D., V. Zimarino, K. Holm, C. Wu, and R. I. Morimoto. 1991. Cloning and characterization of two mouse heat shock factors with distinct inducible and constitutive DNA-binding ability. Genes Dev. 5:1902–1911.
  • Schuetz, T. J., G. J. Gallo, L. Sheldon, P. Tempst, and R. E. Kingston. 1991. Isolation of a cDNA for HSF2: evidence for two heat shock factor genes in humans. Proc. Natl. Acad. Sci. USA 88:6911–6915.
  • Sheldon, L. A., and R. E. Kingston. 1993. Hydrophobic coiled-coil domains regulate the subcellular localization of human heat shock factor 2. Genes Dev. 7:1549–1558.
  • Sistonen, L., K. D. Sarge, B. Phillips, K. Abravaya, and R. I. Morimoto. 1992. Activation of heat shock factor 2 during hemin-induced differentiation of human erythroleukemia cells. Mol. Cell. Biol. 12:4104–4111.
  • Sorger, P. K. 1990. Yeast heat shock factor contains separable transient and sustained response transcriptional activators. Cell 62:793–805.
  • Sorger, P. K. 1991. Heat shock factor and the heat shock response. Cell 65:363–366.
  • Sorger, P. K., and H. C. M. Nelson. 1989. Trimerization of a yeast transcriptional activator via a coiled-coil motif. Cell 59:807–813.
  • Taylor, I. C. A. 1991. Ph.D. dissertation. Harvard University, Boston.
  • Zimarino, V., C. Tsai, and C. Wu. 1990. Complex modes of heat shock factor activation. Mol. Cell. Biol. 10:752–759.
  • Zimarino, V., S. Wilson, and C. Wu. 1990. Antibody-mediated activation of Drosophila heat shock factor in vitro. Science 249:546–549.
  • Zimarino, V., and C. Wu. 1987. Induction of sequence-specific binding of Drosophila heat shock activator protein without protein synthesis. Nature (London) 327:727–730.
  • Zuo, J., R. Baler, G. Dahl, and R. Voellmy. 1994. Activation of the DNA-binding ability of human heat shock factor 1 may involve the transition from an intramolecular to an intermolecular triple-stranded coiled-coil structure. Mol. Cell. Biol. 14:7557–7568.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.