9
Views
122
CrossRef citations to date
0
Altmetric
Research Article

Transcriptional Activation of the fra-1 Gene by AP-1 Is Mediated by Regulatory Sequences in the First Intron

, , , &
Pages 3748-3758 | Received 31 Oct 1994, Accepted 26 Apr 1995, Published online: 30 Mar 2023

REFERENCES

  • Angel, P., and M. Karin. 1991. The role of Jun, Fos and the AP-1 complex in cell proliferation and transformation. Biochim. Biophys. Acta 1072:129–157.
  • Bergers, G., A. Reikerstorfer, S. Braselmann, P. Graninger, and M. Busslinger. 1994. Alternative promoter usage of the Fos-responsive gene Fit-1 generates mRNA isoforms coding for either secreted or membrane-bound proteins related to the IL-1 receptor. EMBO J. 13:1176–1188.
  • Braselmann, S., G. Bergers, C. Wrighton, P. Graninger, G. Superti-Furga, and M. Busslinger. 1992. Identification of Fos target genes by the use of selective induction systems. J. Cell Sci. 16(Suppl.):97–109.
  • Braselmann, S., P. Graninger, and M. Busslinger. 1993. A selective transcriptional induction system for mammalian cells based on Gal4-estrogen receptor fusion proteins. Proc. Natl. Acad. Sci. USA 90:1657–1661.
  • Brüsselbach, S., U. Möhle-Steinlein, Z.-Q. Wang, M. Schreiber, F. C. Lucibello, R. Müller, and E. F. Wagner. 1995. Cell proliferation and cell cycle progression are not impaired in fibroblasts and ES cells lacking c-Fos. Oncogene 10:79–86.
  • Busslinger, M., and G. Bergers. 1994. Identification of AP-1-regulated genes, p. 133–150. In P. E. Angel, and P. A. Herrlich (ed.), The Fos and Jun families of transcription factors. CRC Press, Boca Raton, Fla.
  • Busslinger, M., N. Moschonas, and R. A. Flavell. 1981. β1 thalassemia: aberrant splicing results from a single point mutation in an intron. Cell 27:289–298.
  • Church, G. M., and W. Gilbert. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81:1991–1995.
  • Cohen, D. R., and T. Curran. 1988. fra-1: a serum-inducible, cellular immediate-early gene that encodes a Fos-related antigen. Mol. Cell. Biol. 8:2063–2069.
  • Cohen, D. R., P. C. P. Ferreira, R. Gentz, B. R. Franza, Jr., and T. Curran. 1989. The product of a fos-related gene, fra-1, binds cooperatively to the AP-1 site with Jun: transcription factor AP-1 is comprised of multiple protein complexes. Genes Dev. 3:173–184.
  • Cohen, D. R., A. H. Sinclair, and J. D. McGovern. 1994. SRY protein enhances transcription of Fos-related antigen 1 promoter constructs. Proc. Natl. Acad. Sci. USA 91:4372–4376.
  • Favarolo, J., R. Treisman, and R. Kamen. 1980. Transcription maps of polyoma virus-specific RNA: analysis by two-dimensional nuclease S1 gel mapping. Methods Enzymol. 65:718–749.
  • Fort, P., L. Marty, M. Piechaczyk, S. E. Sabrouty, C. Dani, P. Jeanteur, and J. M. Blanchard. 1985. Various rat tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Res. 13:1431–1442.
  • Freter, R. R., J.-C. Irminger, J. A. Porter, S. D. Jones, and C. D. Stiles. 1992. A novel 7-nucleotide motif located in 39 untranslated sequences of the immediate-early gene set mediates platelet-derived growth factor induction of the JE gene. Mol. Cell. Biol. 12:5288–5300.
  • Gius, D., X. M. Cao, F. J. Rauscher III, D. R. Cohen, T. Curran, and V. P. Sukhatme. 1990. Transcriptional activation and repression by Fos are independent functions: the C terminus represses immediate-early gene expression via CArG elements. Mol. Cell. Biol. 10:4243–4255.
  • Goeddel, D. Unpublished data.
  • Gorman, C. M., L. F. Moffat, and B. H. Howard. 1982. Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol. Cell. Biol. 2:1044–1051.
  • Graninger, P., and M. Busslinger. Unpublished data.
  • Grigoriadis, A., Z.-Q. Wang, M. G. Cecchini, W. Hofstetter, R. Felix, H. A. Fleisch, and E. F. Wagner. 1994. c-Fos: a key regulator of osteoclast-macrophage lineage determination and bone remodeling. Science 266:443–448.
  • Grigoriadis, A. E., K. Schellander, Z.-Q. Wang, and E. F. Wagner. 1993. Osteoblasts are target cells for transformation in c-fos transgenic mice. J. Cell Biol. 122:685–701.
  • Halazonetis, T. D., K. Georgopoulos, M. E. Greenberg, and P. Leder. 1988. c-Jun dimerizes with itself and with c-Fos, forming complexes of different DNA-binding affinities. Cell 55:917–925.
  • Hengerer, B., D. Lindholm, R. Heumann, U. Rüther, E. F. Wagner, and H. Thoenen. 1990. Lesion-induced increase in nerve growth factor mRNA is mediated by c-fos. Proc. Natl. Acad. Sci. USA 87:3899–3903.
  • Hilberg, F., A. Aguzzi, N. Howells, and E. F. Wagner. 1993. c-Jun is essential for normal mouse development and hepatogenesis. Nature (London) 365: 179–181.
  • Hirai, S.-I., B. Bourachot, and M. Yaniv. 1990. Both Jun and Fos contribute to transactivation by the heterodimer. Oncogene 5:39–46.
  • Hirai, S.-I., R.-P. Ryseck, F. Mechta, R. Bravo, and M. Yaniv. 1989. Char-acterization of junD: a new member of the jun proto-oncogene family. EMBO J. 8:1433–1439.
  • Johnson, R. S., B. M. Spiegelman, and V. Papaioannou. 1992. Pleiotropic effects of a null mutation of the c-fos proto-oncogene. Cell 71:577–586.
  • Johnson, R. S., B. van Lingen, V. E. Papaioannou, and B. M. Spiegelman. 1993. A null mutation at the c-jun locus causes embryonic lethality and retarded cell growth in culture. Genes Dev. 7:1309–1317.
  • Jooss, K. U., M. Funk, and R. Müller. 1994. An autonomous N-terminal transactivation domain in Fos protein plays a crucial role in transformation. EMBO J. 13:1467–1475.
  • Kakidani, H., and M. Ptashne. 1988. GAL4 activates gene expression in mammalian cells. Cell 52:161–167.
  • Kerppola, T. K., and T. Curran. 1991. Transcription factor interactions: basics on zippers. Curr. Opin. Struct. Biol. 1:71–79.
  • Kirschmeier, P. T., G. M. Housey, M. D. Johnson, A. S. Perkins, and B. I. Weinstein. 1988. Construction and characterization of a retroviral vector demonstrating efficient expression of cloned cDNA sequences. DNA 7:219–225.
  • Kovary, K., and R. Bravo. 1992. Existence of different Fos/Jun complexes during the G0-to-G1 transition and during exponential growth in mouse fibroblasts: differential role of Fos proteins. Mol. Cell. Biol. 12:5015–5023.
  • Kovary, L., C. A. Rizzo, R.-P. Ryseck, T. Noguchi, C. Raynoschek, J.-M. Pelosin, and R. Bravo. 1991. Constitutive expression of FosB and its short form, FosB/SF, induces malignant cell transformation in Rat-1A cells. New Biol. 3:870–879.
  • Markowitz, D., S. Goff, and A. Bank. 1988. A safe packaging line for gene transfer: separating viral genes on two different plasmids. J. Virol. 62:1120–1124.
  • Miao, G. G., and T. Curran. 1994. Cell transformation by c-fos requires an extended period of expression and is independent of the cell cycle. Mol. Cell. Biol. 14:4295–4310.
  • Miller, D. A., T. Curran, and I. M. Verma. 1984. c-Fos protein can induce cellular transformation: a novel mechanism of activation of a cellular oncogene. Cell 36:51–60.
  • Mumberg, D., F. C. Lucibello, M. Schuermann, and R. Müller. 1991. Alternative splicing of fosB transcripts results in differentially expressed mRNAs encoding functionally antagonistic proteins. Genes Dev. 5:1212–1223.
  • Nakabeppu, Y., and D. Nathans. 1991. A naturally occurring truncated form of FosB that inhibits Fos/Jun transcriptional activity. Cell 64:751–759.
  • Nakabeppu, Y., K. Ryder, and D. Nathans. 1988. DNA binding activities of three murine Jun proteins: stimulation by Fos. Cell 55:907–915.
  • Nicklin, M. Unpublished data.
  • Nordeen, S. K. 1988. Luciferase reporter gene vectors for analysis of promoters and enhancers. BioTechniques 6:454–457.
  • Oshima, R. G., L. Abrams, and D. Kulesh. 1990. Activation of an intron enhancer within the keratin 18 gene by expression of c-fos and c-jun in undifferentiated F9 embryonal carcinoma cells. Genes Dev. 4:835–848.
  • Pratt, M. A. C., J. Kralova, and M. W. McBurney. 1990. A dominant negative mutation of the alpha retinoic acid receptor gene in a retinoic acid-nonre-sponsive embryonal carcinoma cell. Mol. Cell. Biol. 10:6445–6453.
  • Ransone, L. J., and I. M. Verma. 1990. Nuclear proto-oncogenes fos and jun. Annu. Rev. Cell Biol. 6:539–557.
  • Reichmann, E., H. Schwarz, E. M. Deiner, I. Leitner, M. Eilers, J. Berger, M. Busslinger, and H. Beug. 1992. Activation of an inducible c-FosER fusion protein causes loss of epithelial polarity and triggers epithelial-fibroblastoid cell conversion. Cell 71:1103–1119.
  • Rüther, U., C. Garber, D. Komitowski, R. Müller, and E. F. Wagner. 1987. Deregulated c-fos expression interferes with normal bone development in transgenic mice. Nature (London) 325:412–416.
  • Rüther, U., W. Müller, T. Sumida, T. Tokuhisa, K. Rajewsky, and E. F. Wagner. 1988. c-fos expression interferes with thymus development in transgenic mice. Cell 53:847–856.
  • Ryder, K., L. F. Lau, and D. Nathans. 1988. A gene activated by growth factors is related to the oncogene v-jun. Proc. Natl. Acad. Sci. USA 85:1487–1491.
  • Ryseck, R.-P., and R. Bravo. 1991. c-Jun, JunB and JunD differ in their binding affinities to AP-1 and CRE consensus sequences: effect of Fos proteins. Oncogene 6:533–542.
  • Ryseck, R.-P., S. I. Hirai, M. Yaniv, and R. Bravo. 1988. Transcriptional activation of c-jun during the G0/G1 transition in mouse fibroblasts. Nature (London) 334:535–537.
  • Sassone-Corsi, P., J. C. Sisson, and I. M. Verma. 1988. Transcriptional autoregulation of the proto-oncogene fos. Nature (London) 334:314–319.
  • Schreiber, M., and E. F. Wagner. Personal communication.
  • Schuermann, M., G. Hennig, and R. Müller. 1993. Transcriptional activation and transformation by chimaeric Fos-estrogen receptor proteins: altered properties as a consequence of gene fusion. Oncogene 8:2781–2790.
  • Schütte, J., J. D. Minna, and M. J. Birrer. 1989. Deregulated expression of human c-jun transforms primary rat embryo fibroblasts in cooperation with an activated c-Ha-ras gene and transforms Rat-1a cells as a single gene. Proc. Natl. Acad. Sci. USA 86:2257–2261.
  • Sugden, B., K. Marsh, and J. Yates. 1985. A vector that replicates as a plasmid and can be efficiently selected in B-lymphoblasts transformed by Epstein-Barr virus. Mol. Cell. Biol. 5:410–413.
  • Superti-Furga, G., G. Bergers, D. Picard, and M. Busslinger. 1991. Hormone-dependent transcriptional regulation and cellular transformation by Fos-steroid receptor fusion proteins. Proc. Natl. Acad. Sci. USA 88:5114–5118.
  • Sutherland, J. A., A. Cook, A. J. Bannister, and T. Kouzarides. 1992. Conserved motifs in Fos and Jun define a new class of activation domain. Genes Dev. 6:1810–1819.
  • Suzuki, T., H. Okuno, T. Yoshida, T. Endo, H. Nishina, and H. Iba. 1991. Difference in transcriptional regulatory function between c-Fos and Fra-2. Nucleic Acids Res. 19:5537–5542.
  • Tsuchiya, H., M. Fujii, T. Niki, M. Tokuhara, M. Matsui, and M. Seiki. 1993. Human T-cell leukemia virus type 1 Tax activates transcription of the human fra-1 gene through multiple cis elements responsive to transmembrane signals. J. Virol. 67:7001–7007.
  • van Dijck, P., K. Schoonjans, P. Sassone-Corsi, J. Auwerx, and G. Verhoeven. 1993. A Fos-Jun element in the first intron of an α2u-globulin gene. Mol. Cell. Biochem. 125:127–136.
  • Vitelli, L., I. Kemler, B. Lauber, M. L. Birnstiel, and M. Busslinger. 1988. Developmental regulation of micro-injected histone genes in sea urchin embryos. Dev. Biol. 127:54–63.
  • Wagner, M., and R. P. Perry. 1985. Characterization of the multigene family encoding the mouse S16 ribosomal protein: strategy for distinguishing an expressed gene from its processed pseudogene counterparts by an analysis of total genomic DNA. Mol. Cell. Biol. 5:3560–3576.
  • Wang, Z.-Q., A. E. Grigoriadis, U. Möhle-Steinlein, and E. F. Wagner. 1991. A novel target cell for c-fos-induced oncogenesis: development of chondro-genic tumours in embryonic stem cell chimeras. EMBO J. 10:2437–2450.
  • Wang, Z.-Q., A. E. Grigoriadis, and E. F. Wagner. 1993. Stable murine chondrogenic cell lines derived from c-fos-induced cartilage tumors. J. Bone Miner. Res. 8:839–847.
  • Wang, Z.-Q., C. Ovitt, A. E. Grigoriadis, U. Möhle-Steinlein, U. Rüther, and E. F. Wagner. 1992. Bone and haematopoietic defects in mice lacking c-fos. Nature (London) 360:741–745.
  • Westin, G., T. Gerster, M. M. Müller, G. Schaffner, and W. Schaffner. 1987. OVEC, a versatile system to study transcription in mammalian cells and cell-free extracts. Nucleic Acids Res. 15:6787–6798.
  • Wilson, T., and R. Treisman. 1988. Fos C-terminal mutations block down-regulation of c-fos transcription following serum stimulation. EMBO J. 7:4193–4202.
  • Wisdom, R., and I. M. Verma. 1993. Proto-oncogene FosB: the amino terminus encodes a regulatory function required for transformation. Mol. Cell. Biol. 13:2635–2643.
  • Wisdom, R., and I. M. Verma. 1993. Transformation by Fos proteins requires a C-terminal transactivation domain. Mol. Cell. Biol. 13:7429–7438.
  • Wrighton, C., and M. Busslinger. 1993. Direct transcriptional stimulation of the ornithine decarboxylase gene by Fos in PC12 cells but not in fibroblasts. Mol. Cell. Biol. 13:4657–4669.
  • Yen, J., R. M. Wisdom, I. Tratner, and I. M. Verma. 1991. An alternative spliced form of FosB is a negative regulator of transcriptional activation and transformation by Fos proteins. Proc. Natl. Acad. Sci. USA 88:5077–5081.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.