3
Views
65
CrossRef citations to date
0
Altmetric
Research Article

A 32-Nucleotide Exon-Splicing Enhancer Regulates Usage of Competing 5′ Splice Sites in a Differential Internal Exon

, , &
Pages 3979-3988 | Received 06 Jan 1995, Accepted 25 Apr 1995, Published online: 30 Mar 2023

REFERENCES

  • Amendt, B., D. Hesslein, L. J. Chang, and C. M. Stoltzfus. 1994. Presence of negative and positive cis-acting RNA splicing elements within and flanking the first tat coding exon of human immunodeficiency virus type 1. Mol. Cell. Biol. 14:3960–3970.
  • Ban, T., K. Ishimura, H. Fujita, K. Sobue, and S. Kakiuchi. 1984. 2. Immunocytochemical demonstration for caldesmon and actin in the striated and smooth muscle cells and non-muscular cells of various organs of rats. Acta Histochem. Cytochem. 17:331–338.
  • Bretscher, A., and W. Lynch. 1985. Identification and localization of immu-noreactive forms of caldesmon in smooth and nonmuscle cells: a comparison with the distributions of tropomyosin and α-actinin. J. Cell Biol. 100:1656–1663.
  • Brunak, S., and J. Engelbrecht. 1991. Prediction of human mRNA donor and acceptor sites from the DNA sequence. J. Mol. Biol. 220:49–65.
  • Caputi, M., G. Casari, S. Guenz, R. Tagliabue, A. Sidoli, C. A. Melo, and F. E. Baralle. 1994. A novel bipartite splicing enhancer modulates the differential processing of the human fibronectin EDA exon. Nucleic Acids Res. 22:1018–1022.
  • Chen, C., and H. Okayama. 1987. High-efficiency transformation of mammalian cells by plasmid DNA. Mol. Cell. Biol. 7:2745–2752.
  • Chen, I.-T., and L. A. Chasin. 1993. Direct selection for mutations affecting splice sites in a hamster dihydrofolate reductase minigene. Mol. Cell. Biol. 13:289–300.
  • Dingus, J., S. Hwo, and J. Bryan. 1986. Identification by monoclonal antibodies and characterization of human platelet caldesmon. J. Cell Biol. 102: 1748–1757.
  • Dirksen, W. P., R. K. Hampson, S. Qiang, and F. M. Rottman. 1994. A purine-rich exon sequence enhances alternative splicing of bovine growth hormone pre-mRNA. J. Biol. Chem. 269:6431–6436.
  • Dominski, Z., and R. Kole. 1991. Selection of splice sites in pre-mRNAs with short internal exons. Mol. Cell. Biol. 11:6075–6083.
  • Eperon, I. C., D. C. Ireland, R. A. Smith, A. Mayeda, and A. R. Krainer. 1993. Pathways for selection of 59 splice sites by U1 snRNPs and SF2/ASF. EMBO J. 12:3607–3617.
  • Eperon, L. P., I. R. Graham, A. D. Griffiths, and I. C. Eperon. 1988. Effects of RNA secondary structure on alternative splicing of pre-mRNA: is folding limited to a region behind the transcribing RNA polymerase? Cell 54:393–401.
  • Estes, P. A., N. E. Cooke, and S. A. Liebhaber. 1992. A native RNA structure controls alternative splice site selection and generates two human growth hormone isoforms. J. Biol. Chem. 267:14902–14908.
  • Frid, M. G., B. V. Shekhonin, V. E. Koteliansky, and M. A. Glukhova. 1992. Phenotypic changes of human smooth muscle cells during development: late expression of heavy caldesmon and calponin. Dev. Biol. 153:185–193.
  • Fu, X.-D., R. A. Kats, A. M. Skalka, and T. Maniatis. 1991. The role of branchpoint and 39-exon sequences in the control of balanced splicing of avian retrovirus RNA. Genes Dev. 5:211–220.
  • Fu, X.-D., A. Mayeda, T. Maniatis, and A. R. Krainer. 1992. General splicing factors SF2 and SC35 have equivalent activities in vitro, and both affect alternative 59 and 39 splice site selection. Proc. Natl. Acad. Sci. USA 89: 11224–11228.
  • Furdon, P. J., and R. Kole. 1988. The length of the downstream exon and the substitution of specific sequences affect pre-mRNA splicing in vitro. Mol. Cell. Biol. 8:860–866.
  • Glukhova, M. A., M. G. Frid, and V. E. Koteliansky. 1990. Developmental changes in expression of contractile and cytoskeletal proteins in human aortic smooth muscle. J. Biol. Chem. 265:13042–13046.
  • Glukhova, M. A., A. E. Kabakov, M. G. Frid, O. I. Ornatsky, A. M. Belkin, D. N. Mukhin, A. N. Orekhov, V. E. Koteliansky, and V. N. Smirnov. 1988. Modulation of human aorta smooth muscle cell phenotype: a study of muscle-specific variants of vinculin, caldesmon, and actin expression. Proc. Natl. Acad. Sci. USA 85:9542–9546.
  • Glukhova, M. A., A. E. Kabakov, O. I. Ornatsky, T. D. Vasilevskaya, V. E. Koteliansky, and V. N. Smirnov. 1987. Immunoreactive forms of caldesmon in cultivated human vascular smooth muscle cells. FEBS Lett. 218:292–294.
  • Haruna, M., K. Hayashi, H. Yano, O. Takeuchi, and K. Sobue. 1993. Common structural and expressional properties of vertebrate caldesmon genes. Biochem. Biophys. Res. Commun. 197:145–153.
  • Hawkins, J. D. 1988. A survey on intron and exon lengths. Nucleic Acids Res. 16:9893–9908.
  • Hayashi, K., H. Yano, T. Hashida, R. Takeuchi, O. Takeda, K. Asada, E. Takahashi, I. Kato, and K. Sobue. 1992. Genomic structure of the human caldesmon gene. Proc. Natl. Acad. Sci. USA 89:12122–12126.
  • Hoshijima, K., K. Inoue, I. Higuchi, H. Sakamoto, and Y. Shimura. 1991. Control of doublesex alternative splicing by transformer and transformer-2 in Drosophila. Science 252:833–836.
  • Humphrey, M. B., and J. Bryan. 1992. Human caldesmon isoforms are generated by an unusual alternative splicing mechanism, abstr. 234. In Abstracts of the American Society for Cell Biology Thirty Second Annual Meeting. American Society for Cell Biology, Bethesda, Md.
  • Humphrey, M. B., H. Herrera-Sosa, G. Gonzalez, R. Lee, and J. Bryan. 1992. Cloning of cDNAs encoding human caldesmons. Gene 112:197–204.
  • Kakiuchi, R., M. Inui, K. Morimoto, K. Kanda, K. Sobue, and S. Kakiuchi. 1983. Caldesmon, a calmodulin-binding protein, is present in aorta, uterus, and platelets. FEBS Lett. 154:351–356.
  • Kakizuka, A., T. Ingi, T. Murai, and S. Nakanishi. 1990. A set of U1 snRNA-complementary sequences involved in governing alternative RNA splicing of the kininogen genes. J. Biol. Chem. 265:10102–10108.
  • Kats, R. A., and A. M. Skalka. 1990. Control of retroviral RNA splicing through maintenance of suboptimal processing signals. Mol. Cell. Biol. 10: 696–704.
  • Kitamura, N., H. Kitagawa, D. Fukushima, Y. Takagaki, T. Miyata, and S. Nakanishi. 1985. Structural organization of the human kininogen gene and a model for its evolution. J. Biol. Chem. 260:8610–8617.
  • Krainer, A. R., G. C. Conway, and D. Kozak. 1990. The essential pre-mRNA splicing factor SF2 influences 59 splice site selection by activating proximal sites. Cell 62:35–42.
  • Laviqueur, A., H. La Branche, A. R. Kornblihtt, and B. Chabot. 1993. A splicing enhancer in the human fibronectin alternate ED1 exon interacts with SR proteins and stimulates U2 snRNP binding. Genes Dev. 7:2405–2417.
  • Libri, D., A. Piseri, and M. Y. Fiszman. 1991. Tissue-specific splicing in vivo of the β-tropomyosin gene: dependence on an RNA secondary structure. Science 252:1842–1845.
  • Litchfield, D. W., and E. H. Ball. 1987. Phosphorylation of caldesmon 77 by protein kinase C in vitro and in intact human platelets. J. Biol. Chem. 262:8056–8060.
  • Mar, J. H., P. B. Antin, T. A. Cooper, and C. P. Ordahl. 1988. Analysis of the upstream regions governing expression of the chicken cardiac tropinin T gene in embryonic cardiac and skeletal muscle cells. J. Cell Biol. 107:573–585.
  • Marston, S. 1989. Calcium ion-dependent regulation of uterine smooth muscle thin filaments by caldesmon. Am. J. Obstet. Gynecol. 160:252–257.
  • Marston, S. B., and W. Lehman. 1985. Caldesmon is a Ca21-regulatory component of native smooth-muscle thin filaments. Biochem. J. 231:517–552.
  • Marston, S. B., and C. S. Redwood. 1991. The molecular anatomy of caldes-mon. Biochem. J. 279:1–16.
  • Mayeda, A., D. H. Helfman, and A. R. Krainer. 1993. Modulation of exon skipping and inclusion by heterogeneous nuclear ribonucleoprotein A1 and pre-mRNA splicing factor SF2/ASF. Mol. Cell. Biol. 13:2993–3001.
  • Mayeda, A., and A. R. Krainer. 1992. Regulation of alternative pre-mRNA splicing by hnRNP A1 and splicing factor SF2. Cell 68:365–375.
  • Nelson, K. K., and M. R. Green. 1990. Mechanism for cryptic splice site activation during pre-mRNA splicing. Proc. Natl. Acad. Sci. USA 87:6253–6257.
  • Oshima, Y., and Y. Gotoh. 1987. Signals for the selection of a splice site in pre-mRNA. J. Mol. Biol. 195:247–259.
  • Owada, M. K., A. Hakura, K. Iida, I. Yahara, K. Sobue, and S. Kakiuchi. 1984. Occurrence of caldesmon (a calmodulin-binding protein) in cultured cells: comparison of normal and transformed cells. Proc. Natl. Acad. Sci. USA 81:3133–3137.
  • Ramchatesingh, J., A. M. Zahler, K. M. Neugebauer, M. B. Roth, and T. Cooper. Submitted for publication.
  • Robberson, B. L., G. J. Cote, and S. M. Berget. 1990. Exon definition may facilitate splice site selection in RNAs with multiple exons. Mol. Cell. Biol. 10:84–94.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sobue, K., Y. Muramoto, M. Fujita, and S. Kakiuchi. 1981. Purification of a calmodulin-binding protein from chicken gizzard that interacts with F-actin. Proc. Natl. Acad. Sci. USA 78:5652–5655.
  • Sobue, K., and J. R. Sellers. 1991. Caldesmon, a novel regulatory protein in smooth muscle and nonmuscle actomyosin systems. J. Biol. Chem. 266: 12115–12118.
  • Solnick, D. 1985. Alternative splicing caused by RNA secondary structure. Cell 43:667–676.
  • Solnick, D., and S. I. Lee. 1987. Amount of RNA secondary structure required to induce an alternative splice. Mol. Cell. Biol. 7:3194–3198.
  • Staknis, D., and R. Reed. 1994. SR proteins promote the first specific recognition of pre-mRNA and are present together with the U1 small nuclear ribonucleoprotein particle in a general splicing enhancer complex. Mol. Cell. Biol. 14:7670–7682.
  • Sterner, D. A., and S. M. Berget. 1993. In vivo recognition of a vertebrate mini-exon as an exon-intron-exon unit. Mol. Cell. Biol. 13:2677–2687.
  • Streuli, M., and H. Saito. 1989. Regulation of tissue-specific alternative splicing: exon-specific cis-elements govern the splicing of leukocyte common antigen pre-mRNA. EMBO J. 8:787–796.
  • Sun, Q., A. Mayeda, R. K. Hampson, A. R. Krainer, and F. M. Rottman. 1993. General splicing factor SF2/ASF promotes alternative splicing by binding to an exonic splicing enhancer. Genes Dev. 7:2598–2608.
  • Takagaki, Y., N. Kitamura, and S. Nakanishi. 1985. Cloning and sequence analysis of cDNAs for human high molecular weight and low molecular weight prekininogens. J. Biol. Chem. 260:8601–8609.
  • Tanaka, K., A. Watakabe, and Y. Shimura. 1994. Polypurine sequences within a downstream exon function as a splicing enhancer. Mol. Cell. Biol. 4:1347–1354.
  • Tian, M., and T. Maniatis. 1993. A splicing enhancer complex controls alternative splicing of doublesex pre-mRNA. Cell 74:105–114.
  • Tian, M., and T. Maniatis. 1994. A splicing enhancer exhibits both constitutive and regulated activities. Genes Dev. 8:1703–1712.
  • Tsukahara, T., C. Casciato, and D. M. Helfman. 1994. Alternative splicing of β-tropomyosin pre-mRNA: multiple cis-elements can contribute to the use of the 59- and 39-splice sites of the nonmuscle/smooth muscle exon 6. Nucleic Acids Res. 22:2318–2325.
  • Ueki, N., K. Sobue, K. Kanda, T. Hada, and K. Higashino. 1987. Expression of high and low molecular weight caldesmons during phenotypic modulation of smooth muscle cells. Proc. Natl. Acad. Sci. USA 84:9049–9053.
  • Wakamatsu, N., H. Kobayashi, T. Miyatake, and S. Tsuji. 1992. A novel exon mutation in the human β-hexosaminidase β subunit gene affects 39 splice site selection. J. Biol. Chem. 267:2406–2413.
  • Wang, C.- L. A., J. M. Chalovich, P. Graceffa, R. C. Lu, K. Mabuchi, and W. F. Stafford. 1991. A long helix from the central region of smooth muscle caldesmon. J. Biol. Chem. 266:13958–13963.
  • Watakabe, A., K. Inoue, H. Sakamoto, and Y. Shimura. 1989. A secondary structure at the 39 splice site affects the in vitro splicing reaction of mouse immunoglobulin m chain pre-mRNAs. Nucleic Acids Res. 17:8159–8169.
  • Watakabe, A., K. Tanaka, and Y. Shimura. 1993. The role of exon sequences in splice site selection. Genes Dev. 7:407–418.
  • Wu, J. Y., and T. Maniatis. 1993. Specific interactions between proteins implicated in splice site selection and regulated alternative splicing. Cell 75:1061–1070.
  • Xie, W., and L. I. Rothblum. 1991. Rapid, small-scale RNA isolation from tissue culture cells. BioTechniques 11:325–327.
  • Xu, R., J. Teng, and T. A. Cooper. 1993. The cardiac troponin T alternative exon contains a novel purine-rich positive splicing element. Mol. Cell. Biol. 13:3660–3674.
  • Yamashiro, S., Y. Yamakita, H. Hosoya, and F. Matsumura. 1991. Phos-phorylation of non-muscle caldesmon by p34cdc2 kinase during mitosis. Nature (London) 349:169–172.
  • Yang, X., M. R. Bani, S. J. Lu, S. Rowan, Y. Ben-David, and B. Chabot. 1994. The A1 and A1B proteins of heterogeneous nuclear ribonucleoparticles modulate 59 splice site selection in vivo. Proc. Natl. Acad. Sci. USA 91:6924–6928.
  • Yano, H., K. Hayashi, M. Haruna, and K. Sobue. 1994. Identification of two distinct promoters in the chicken caldesmon gene. Biochem. Biophys. Res. Commun. 201:618–626.
  • Zahler, A. M., K. M. Neugebbauer, W. S. Lane, and M. B. Roth. 1993. Distinct functions of SR proteins in alternative splicing. Science 260:219–222.
  • Zamore, P. D., J. G. Patton, and M. R. Green. 1992. Cloning and domain structure of the mammalian splicing factor U2AF. Nature (London) 355: 609–614.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.