3
Views
80
CrossRef citations to date
0
Altmetric
Research Article

Mutations in RAD27 Define a Potential Link between G1 Cyclins and DNA Replication

&
Pages 4291-4302 | Received 23 Dec 1994, Accepted 11 May 1995, Published online: 30 Mar 2023

REFERENCES

  • Adams, A. E. M., and J. R. Pringle. 1984. Relationship of actin and tubulin distribution to bud growth in wild-type and morphogenetic-mutant Saccha-romyces cerevisiae. J. Cell Biol. 98:934–945.
  • Allen, J. B., Z. Zhou, W. Siede, E. C. Friedberg, and S. J. Elledge. 1994. The SAD1/RAD53 protein kinase controls multiple checkpoints and DNA damage-induced transcription in yeast. Genes Dev. 8:2401–2415.
  • Amon, A., M. Tyers, B. Futcher, and K. Nasmyth. 1993. Mechanisms that help the yeast cell cycle clock tick: G2 cyclins transcriptionally activate G2 cyclins and repress G1 cyclins. Cell 74:993–1007.
  • Ausubel, F. M., R. Brent, R. E. Kingston, D. D. Moore, J. G. Seidman, J. A. Smith, and K. Struhl. 1987. Current protocols in molecular biology. Wiley Interscience, New York.
  • Benton, B., and A. Tinkelenberg. Personal communication.
  • Benton, B. K., A. H. Tinkelenberg, D. Jean, S. D. Plump, and F. R. Cross. 1993. Genetic analysis of Cln/Cdc28 regulation of cell morphogenesis in budding yeast. EMBO J. 12:5267–5275.
  • Campbell, J. L., and C. S. Newlon. 1991. Chromosomal DNA replication, p. 41–146. In J. R. Broach, J. R. Pringle, and E. W. Jones (ed.), The molecular and cellular biology of the yeast Saccharomyces, vol. I. Genome dynamics, protein synthesis and energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Carr, A. M., K. S. Sheldrick, J. M. Murray, R. Al-Harithy, F. Z. Watts, and A. R. Lehmann. 1993. Evolutionary conservation of excision repair in Schiz-osaccharomyces pombe: evidence for a family of sequences related to the Saccharomyces cerevisiae RAD2 gene. Nucleic Acids Res. 21:1345–1349.
  • Cross, F. R. 1988. DAF1, a mutant gene affecting size control, pheromone arrest, and cell cycle kinetics of Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4675–4684.
  • Cross, F. R. 1990. Cell cycle arrest caused by CLN gene deficiency in Saccharomyces cerevisiae resembles START-I arrest and is independent of the mating-pheromone signalling pathway. Mol. Cell. Biol. 10:6482–6490.
  • Cross, F. R. Unpublished data.
  • Cross, F. R., and C. M. Blake. 1993. The yeast Cln3 protein is an unstable activator of Cdc28. Mol. Cell. Biol. 13:3266–3271.
  • Cross, F. R., and A. H. Tinkelenberg. 1991. A potential positive feedback loop controlling CLN1 and CLN2 gene expression at the start of the yeast cell cycle. Cell 65:875–883.
  • Cvrcková, F., and K. Nasmyth. 1993. Yeast G1 cyclins CLN1 and CLN2 and a GAP-like protein have a role in bud formation. EMBO J. 12:5277–5286.
  • Dulic, V., W. K. Kaufmann, S. J. Wilson, T. D. Tlsty, E. Lees, J. W. Harper, S. J. Elledge, and S. I. Reed. 1994. p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76:1013–1023.
  • El-Deiry, W. S., J. W. Harper, P. M. O'Connor, V. E. Velculescu, C. E. Canman, J. Jackman, J. A. Pietenpol, M. Burrell, D. E. Hill, Y. Wang, K. G. Wiman, W. E. Mercer, M. B. Kastan, K. W. Kohn, S. J. Elledge, K. W. Kinzler, and B. Vogelstein. 1994. WAF1/CIP1 is induced in p53-mediated G1 arrest and apoptosis. Cancer Res. 54:1169–1174.
  • Enoch, T., and P. Nurse. 1990. Mutation of fission yeast cell cycle control genes abolishes dependence of mitosis on DNA replication. Cell 60:665–673.
  • Epstein, C. B. 1992. Ph.D. thesis. Rockefeller University, New York.
  • Epstein, C. B., and F. R. Cross. 1992. CLB5: a novel B cyclin from budding yeast with a role in S phase. Genes Dev. 6:1695–1706.
  • Goulian, M., S. H. Richards, C. J. Heard, and B. M. Bigsby. 1990. Discontinuous DNA synthesis by purified mammalian proteins. J. Biol. Chem. 265:18461–18471.
  • Grandin, N., and S. I. Reed. 1993. Differential function and expression of Saccharomyces cerevisiae B-type cyclins in mitosis and meiosis. Mol. Cell. Biol. 13:2113–2125.
  • Habraken, Y., P. Sung, L. Prakash, and S. Prakash. 1993. Yeast excision repair gene RAD2 encodes a single-stranded DNA endonuclease. Nature (London) 366:365–368.
  • Hadwiger, J. A., C. Wittenberg, H. E. Richardson, M. De Barros Lopes, and S. I. Reed. 1989. A family of cyclin homologs that control the G1 phase in yeast. Proc. Natl. Acad. Sci. USA 86:6255–6259.
  • Harrington, J. J., and M. R. Lieber. 1994. The characterization of a mammalian DNA structure-specific endonuclease. EMBO J. 13:1235–1246.
  • Harrington, J. J., and M. R. Lieber. 1994. Functional domains within FEN-1 and RAD2 define a family of structure-specific endonucleases: implications for nucleotide excision repair. Genes Dev. 8:1344–1355.
  • Hartwell, L. H., and T. A. Weinert. 1989. Checkpoints: controls that ensure the order of cell cycle events. Science 246:629–634.
  • Hatakeyama, M., J. A. Brill, G. R. Fink, and R. A. Weinberg. 1994. Collaboration of G1 cyclins in the functional inactivation of the retinoblastoma protein. Genes Dev. 8:1759–1771.
  • Hennessy, K. M., A. Lee, E. Chen, and D. Botstein. 1991. A group of interacting yeast DNA replication genes. Genes Dev. 5:958–969.
  • Ishimi, Y., A. Claude, P. Bullock, and J. Hurwitz. 1988. Complete enzymatic synthesis of DNA containing the SV40 origin of replication. J. Biol. Chem. 263:19723–19733.
  • Jacquier, A., P. Legrain, and B. Dujon. 1992. Sequence of a 10.7kb segment of yeast chromosome XI identifies the APN1 and BAF1 loci and reveals one tRNA gene and several new open reading frames including homologs to RAD2 and kinases. Yeast 8:121–132.
  • Kastan, M. B., Q. Zhan, W. S. El-Deiry, F. Carrier, T. Jacks, W. V. Walsh, B. S. Plunkett, B. Vogelstein, and A. J. Fornace, Jr. 1992. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71:587–597.
  • Kilmartin, J. V., and A. E. M. Adams. 1984. Structural rearrangements of tubulin and actin during the cell cycle of the yeast Saccharomyces. J. Cell Biol. 98:922–933.
  • Kilmartin, J. V., B. Wright, and C. Milstein. 1982. Rat monoclonal antitu-bulin antibodies derived by using a new nonsecreting rat cell line. J. Cell Biol. 93:576–582.
  • Kuerbitz, S. J., B. S. Plunkett, W. V. Walsh, and M. B. Kastan. 1992. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl. Acad. Sci. USA 89:7491–7495.
  • Lea, D. E., and C. A. Coulson. 1948. The distribution of numbers of mutants in bacterial populations. J. Genet. 49:264–284.
  • Lundgren, K., N. Walworth, R. Booher, M. Dembski, M. Kirschner, and D. Beach. 1991. mik1 and wee1 cooperate in the inhibitory tyrosine phosphor-ylation of cdc2. Cell 64:1111–1122.
  • McIntosh, E. M. 1993. MCB elements and the regulation of DNA replication genes in yeast. Curr. Genet. 24:185–192.
  • McKinney, J. D., F. Chang, N. Heintz, and F. R. Cross. 1993. Negative regulation of FAR1 at the Start of the yeast cell cycle. Genes Dev. 7:833–843.
  • Murray, J. M., M. Tavassoli, R. Al-Harithy, K. S. Sheldrick, A. R. Lehmann, A. M. Carr, and F. Z. Watts. 1994. Structural and functional conservation of the human homolog of the Schizosaccharomyces pombe rad2 gene, which is required for chromosome segregation and recovery from DNA damage. Mol. Cell. Biol. 14:4878–4888.
  • Nasmyth, K. 1993. Control of the yeast cell cycle by the Cdc28 protein kinase. Curr. Opin. Cell Biol. 5:166–179.
  • Oehlen, L. J. W. M., and F. R. Cross. 1994. G1 cyclins CLN1 and CLN2 repress the mating factor response pathway at Start in the yeast cell cycle. Genes Dev. 8:1058–1070.
  • Ogas, J., B. J. Andrews, and I. Herskowitz. 1991. Transcriptional activation of CLN1, CLN2, and a putative new G1 cyclin (HCS26) by SWI4, a positive regulator of G1-specific transcription. Cell 66:1015–1026.
  • Osley, M. A. 1991. The regulation of histone synthesis in the cell cycle. Annu. Rev. Biochem. 60:827–861.
  • Pringle, J. R., and L. H. Hartwell. 1981. The Saccharomyces cerevisiae cell cycle, p. 97–142. In J. N. Strathern, E. W. Jones, and J. R. Broach (ed.), The molecular biology of the yeast Saccharomyces: life cycle and inheritance. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Reagan, M. S., C. Pittenger, W. Siede, and E. C. Friedberg. 1995. Charac- terization of a mutant strain of Saccharomyces cerevisiae with a deletion of the RAD27 gene, a structural homolog of the RAD2 nucleotide excision repair gene. J. Bacteriol. 177:364–371.
  • Richardson, H. E., C. Wittenberg, F. Cross, and S. I. Reed. 1989. An essential G1 function for cyclin-like proteins in yeast. Cell 59:1127–1133.
  • Robinson, G. W., C. M. Nicolet, D. Kalainov, and E. C. Friedberg. 1986. A yeast excision-repair gene is inducible by DNA-damaging agents. Proc. Natl. Acad. Sci. USA 83:1842–1846.
  • Rose, M. D., and G. R. Fink. 1987. KAR1, a gene required for function of both intranuclear and extranuclear microtubules in yeast. Cell 48:1047–1060.
  • Rose, M. D., F. Winston, and P. Hieter. 1990. Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Scherly, D., T. Nouspikel, J. Corlet, C. Ucla, A. Bairoch, and S. G. Clarkson. 1993. Complementation of the DNA repair defect in xeroderma pigmento-sum group G cells by a human cDNA related to yeast RAD2. Nature (London) 363:182–188.
  • Schwartz, D. C., and C. R. Cantor. 1984. Separation of yeast chromosome-sized DNAs by pulsed field gradient gel electrophoresis. Cell 37:67–75.
  • Schwob, E., T. Böhm, M. D. Mendenhall, and K. Nasmyth. 1994. The B-type cyclin kinase inhibitor p40SIC1 controls the G1 to S transition in S. cerevisiae. Cell 79:233–244.
  • Schwob, E., and K. Nasmyth. 1993. CLB5 and CLB6, a new pair of B cyclins involved in DNA replication in Saccharomyces cerevisiae. Genes Dev. 7:1160–1175.
  • Siede, W., A. S. Friedberg, I. Dianova, and E. C. Friedberg. 1994. Charac-terization of G1 checkpoint control in the yeast Saccharomyces cerevisiae following exposure to DNA-damaging agents. Genetics 138:271–281.
  • Siede, W., A. S. Friedberg, and E. C. Friedberg. 1993. RAD9-dependent G1 arrest defines a second checkpoint for damaged DNA in the cell cycle of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA 90:7985–7989.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast strains designed for efficient manipulation of DNA in Saccharomyces cer-evisiae. Genetics 122:19–27.
  • Stueland, C. S., D. J. Lew, M. J. Cismowski, and S. I. Reed. 1993. Full activation of p34CDC28 histone H1 kinase activity is unable to promote entry into mitosis in checkpoint-arrested cells of the yeast Saccharomyces cerevi-siae. Mol. Cell. Biol. 13:3744–3755.
  • Tinkelenberg, A. Personal communication.
  • Turchi, J. J., and R. A. Bambara. 1993. Completion of mammalian lagging strand DNA replication using purified proteins. J. Biol. Chem. 268:15136–15141.
  • Tyers, M., G. Tokiwa, and B. Futcher. 1993. Comparison of the Saccharo-myces cerevisiae G1 cyclins: Cln3 may be an upstream activator of Cln1, Cln2 and other cyclins. EMBO J. 12:1955–1968.
  • Vallen, E. A. Unpublished data.
  • Vallen, E. A., and K. Tseng. Unpublished data.
  • Waga, S., G. Bauer, and B. Stillman. 1994. Reconstitution of complete SV40 DNA replication with purified replication factors. J. Biol. Chem. 269:10923–10934.
  • Weinert, T. A., and L. H. Hartwell. 1988. The RAD9 gene controls the cell cycle response to DNA damage in Saccharomyces cerevisiae. Science 241: 317–322.
  • Weinert, T. A., and L. H. Hartwell. 1990. Characterization of RAD9 of Saccharomyces cerevisiae and evidence that its function acts posttranslation-ally in cell cycle arrest after DNA damage. Mol. Cell. Biol. 10:6554–6564.
  • Weinert, T. A., and L. H. Hartwell. 1993. Cell cycle arrest of cdc mutants and specificity of the RAD9 checkpoint. Genetics 134:63–80.
  • Weinert, T. A., G. L. Kiser, and L. H. Hartwell. 1994. Mitotic checkpoint genes in budding yeast and the dependence of mitosis on DNA replication and repair. Genes Dev. 8:652–665.
  • Wittenberg, C., K. Sugimoto, and S. I. Reed. 1990. G1-specific cyclins of S. cerevisiae: cell cycle periodicity, regulation by mating pheromone, and association with the p34CDC28 protein kinase. Cell 62:225–237.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.