7
Views
107
CrossRef citations to date
0
Altmetric
Research Article

Multiple Genes, Including a Member of the AAA Family, Are Essential for Degradation of Unassembled Subunit 2 of Cytochrome c Oxidase in Yeast Mitochondria

, , &
Pages 4441-4452 | Received 28 Nov 1994, Accepted 22 May 1995, Published online: 30 Mar 2023

REFERENCES

  • Akiyama, Y., T. Ogura, and K. Ito. 1994. Involvement of FtsH in protein assembly into and through the membrane. I. Mutations that reduce retention efficiency of a cytoplasmic reporter. J. Biol. Chem. 269:5218–5224.
  • Akiyama, Y., Y. Shirai, and K. Ito. 1994. Involvement of FtsH in protein assembly into and through the membrane. II. Dominant mutations affecting FtsH functions. J. Biol. Chem. 269:5225–5229.
  • Argos, P., R. M. Garavito, W. Eventoff, M. G. Rossmann, and C. I. Branden. 1978. Similarities in active center geometries of zinc-containing enzymes, proteases and dehydrogenases. J. Mol. Biol. 126:141–158.
  • Attardi, G., and G. Schatz. 1988. Biogenesis of mitochondria. Annu. Rev. Cell Biol. 4:289–333.
  • Bandlow, W. 1972. Membrane separation and biogenesis of the outer membrane of yeast mitochondria. Biochim. Biophys. Acta 282:105–122.
  • Block, M. R., B. S. Glick, C. A. Wilcox, F. T. Wieland, and J. E. Rothman. 1988. Purification of an N-ethylmaleimide-sensitive protein catalyzing vesicular transport. Proc. Natl. Acad. Sci. USA 85:7852–7856.
  • Campbell, C. L., L. Tanaka, K. H. White, and P. E. Thorsness. 1994. Mitochondrial morphological and functional defects in yeast caused by yme1 are suppressed by mutation of a 26S protease subunit homologue. Mol. Biol. Cell 5:899–905.
  • Capaldi, R. A. 1990. Structure and function of cytochrome c oxidase. Annu. Rev. Biochem. 59:569–596.
  • Chevallier, M. R., J. C. Bloch, and F. Lacroute. 1980. Transcriptional and translational expression of a chimeric bacterial-yeast plasmid in yeasts. Gene 11:11–19.
  • Daum, G., P. C. Böhni, and G. Schatz. 1982. Import of protein into mitochondria: cytochrome b2 and cytochrome c peroxidase are located in the intermembrane space of yeast mitochondria. J. Biol. Chem. 257:13028–13033.
  • Desautels, M., and A. L. Goldberg. 1982. Demonstration of an ATP-dependent, vanadate-sensitive endoprotease in the matrix of rat liver mitochondria. J. Biol. Chem. 257:11673–11679.
  • Desautels, M., and A. L. Goldberg. 1982. Liver mitochondria contain an ATP-dependent, vanadate-sensitive pathway for the degradation of proteins. Proc. Natl. Acad. Sci. USA 79:1869–1873.
  • Dowhan, W., C. R. Bibus, and G. Schatz. 1985. The cytoplasmically-made subunit IV is necessary for assembly of cytochrome c oxidase in yeast. EMBO J. 4:179–184.
  • Eakle, K. A., M. Bernstein, and S. D. Emr. 1988. Characterization of a component of the yeast secretion machinery: identification of the SEC18 gene product. Mol. Cell. Biol. 8:4098–4109.
  • Erdmann, R., F. F. Wiebel, A. Flessau, J. Rytka, A. Beyer, K.-U. Fröhlich, and W.-H. Kunau. 1991. PAS1, a yeast gene required for peroxisome bio-genesis, encodes a member of a novel family of putative ATPases. Cell 64:499–510.
  • Fröhlich, K.-U., H.-W. Fries, M. Rüdiger, R. Erdmann, D. Botstein, and D. Mecke. 1991. Yeast cell cycle protein CDC48p shows full-length homology to the mammalian protein VCP and is a member of a protein family involved in secretion, peroxisome formation, and gene expression. J. Cell Biol. 114: 443–453.
  • Fujiki, Y., A. L. Hubbard, S. Fowler, and P. B. Lazarow. 1982. Isolation of intracellular membranes by means of sodium carbonate treatment: application to endoplasmic reticulum. J. Cell Biol. 93:97–102.
  • Fujiwara, T., K. Tanaka, E. Orino, T. Yoshimura, A. Kumatori, T. Tamura, C. H. Chung, T. Nakai, K. Yamaguchi, S. Shin, A. Kakizuka, S. Nakanishi, and A. Ichihara. 1990. Proteasomes are essential for yeast proliferation. J. Biol. Chem. 265:16604–16613.
  • Gbelska, Y., J. Subik, A. Svoboda, A. Goffeau, and L. Kovac. 1983. Intrami-tochondrial ATP and cell functions: yeast cells depleted of intramitochon-drial ATP lose the ability to grow and multiply. Eur. J. Biochem. 130:281–286.
  • Goldberg, A. L. 1992. The mechanism and functions of ATP-dependent proteases in bacterial and animal cells. Eur. J. Biochem. 203:9–23.
  • Goldberg, A. L., and J. F. Dice. 1974. Intracellular protein degradation in mammalian and bacterial cells. Annu. Rev. Biochem. 43:835–869.
  • Goldberg, A. L., R. Voellmy, C. H. Chung, A. S. Menon, M. Desautels, T. Meixsell, and L. Waxman. 1985. The ATP-dependent pathway for protein breakdown in bacteria and mitochondria. Prog. Clin. Biol. Res. 180:33–45.
  • Hartl, F.-U., N. Pfanner, D. W. Nicholson, and W. Neupert. 1989. Mitochondrial protein import. Biochim. Biophys. Acta 988:1–45.
  • Hatefi, Y., and J. S. Rieske. 1967. The preparation and properties of DPNH-cytochrome c reductase (complex I-III of the respiratory chain). Methods Enzymol. 10:225–231.
  • Henikoff, S. 1984. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359.
  • Herman, C., T. Ogura, T. Tomoyasu, S. Hiraga, Y. Akiyama, K. Ito, R. Thomas, R. D'Ari, and P. Bouloc. 1993. Cell growth and lambda phage development controlled by the same essential Escherichia coli gene, ftsH/ hf1B. Proc. Natl. Acad. Sci. USA 90:10861–10865.
  • Itoh, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Jiang, W., and J. S. Bond. 1992. Families of metalloendopeptidases and their relationships. FEBS Lett. 312:110–114.
  • Kalnov, S. L., L. A. Novikova, A. S. Zubatov, and V. N. Luzikov. 1979. Proteolysis of the products of mitochondrial protein synthesis in yeast mitochondria and submitochondrial particle. Biochem. J. 182:195–202.
  • Koller, K. J., and J. Brownstein. 1987. Use of a cDNA clone to identify a supposed precursor protein containing valosin. Nature (London) 325:542–545.
  • Krummeck, G., and G. Rödel. 1990. Yeast SCO1 protein is required for a post-translational step in the accumulation of mitochondrial cytochrome c oxidase subunits I and II. Curr. Genet. 18:13–15.
  • Kunau, W. H., A. Beyer, T. Franken, K. Gotte, M. Marzioch, J. Saidowsky, A. Skaletz-Rorowski, and F. F. Wiebel. 1993. Two complementary approaches to study peroxisome biogenesis in Saccharomyces cerevisiae: forward and reversed genetics. Biochimie 75:209–224.
  • Kutejová, E., G. Durcová, E. Surovková, and S. Kuzela. 1993. Yeast mitochondrial ATP-dependent protease, purification and comparison with the homologous rat enzyme and the bacterial ATP-dependent protease La. FEBS Lett. 329:47–50.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Lyons, S., and N. Nelson. 1984. An immunological method for detecting gene expression in yeast colonies. Proc. Natl. Acad. Sci. USA 81:7426–7430.
  • Maccecchini, M.-L., Y. Rudin, G. Blobel, and G. Schatz. 1979. Import of proteins into mitochondria: precursor forms of the extramitochondrially made F1-ATPase subunits in yeast. Proc. Natl. Acad. Sci. USA 76:343–347.
  • Mason, T. L., R. O. Poyton, D. C. Wharton, and G. Schatz. 1973. Cytochrome c oxidase from baker's yeast. J. Biol. Chem. 248:1346–1354.
  • Masters, B. S. S., J. C. H. Williams, and H. Kamin. 1967. The preparation and properties of microsomal TPNH-cytochrome c reductase from pig liver. Methods Enzymol. 10:565–573.
  • Nakai, M., T. Endo, T. Hase, and H. Matsubara. 1993. Intramitochondrial protein sorting. J. Biol. Chem. 268:24262–24269.
  • Nakai, T., Y. Mera, T. Yasuhara, and A. Ohashi. 1994. Divalent metal ion-dependent mitochondrial degradation of unassembled subunits 2 and 3 of cytochrome c oxidase. J. Biochem. (Tokyo) 116:752–758.
  • Nelböck, P., P. J. Dillon, A. Perkins, and C. A. Rosen. 1990. A cDNA for a protein that interacts with the human immunodeficiency virus tat transacti-vator. Science 248:1650–1653.
  • Nobrega, F. G., M. P. Nobrega, and A. Tzagoloff. 1992. BCS1, a novel gene required for the expression of functional Rieske iron-sulfur protein in Sac-charomyces cerevisiae. EMBO J. 11:3821–3829.
  • Ohana, B., P. A. Moore, S. M. Ruben, C. D. Southgate, M. R. Green, and C. A. Rosen. 1993. The type 1 human immunodeficiency virus Tat binding protein is a transcriptional activator belonging to an additional family of evolutionary conserved genes. Proc. Natl. Acad. Sci. USA 90:138–142.
  • Pearson, W., and D. J. Lipman. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85:2444–2448.
  • Power, S. D., M. A. Lochrie, K. A. Sevarino, T. E. Patterson, and R. O. Poyton. 1984. The nuclear-coded subunits of yeast cytochrome c oxidase. J. Biol. Chem. 259:6564–6570.
  • Rose, M. D., F. Winton, and P. Hieter. 1990. Methods in yeast genetics: a laboratory course manual. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Rothman, J. E. 1989. Polypeptide chain binding proteins: catalysts of protein folding and related processes in cells. Cell 59:591–601.
  • Rubin, M. S., and A. Tzagoloff. 1978. Cytochrome oxidase of Saccharomyces cerevisiae. Methods Enzymol. 53:73–79.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Schnall, R., G. Mannhaupt, R. Stucka, R. Tauer, S. Ehnle, C. Schwarzlose, I. Vetter, and H. Feldmann. 1994. Identification of a set of yeast genes coding for a novel family of putative ATPases with high similarity to constituents of the 26S protease complex. Yeast 10:1141–1155.
  • Schoppink, P. J., J. A. Berden, and L. A. Grivell. 1989. Inactivation of the gene encoding the 14-kDa subunit VII of yeast ubiquinol-cytochrome c oxidoreductase and analysis of the resulting mutant. Eur. J. Biochem. 181: 475–483.
  • Shibuya, H., K. Irie, J. Ninomiya-Tsuji, M. Goebl, T. Taniguchi, and K. Matsumoto. 1992. New human gene encoding a positive modulator of HIV Tat-mediated transactivation. Nature (London) 357:700–702.
  • Stanley, K., and J. P. Luzio. 1984. Construction of a new family of high efficiency bacterial expression vectors: identification of cDNA clones coding for human liver proteins. EMBO J. 3:1429–1434.
  • Suzuki, C. H., K. Suda, N. Wang, and G. Schatz. 1994. Requirement for the yeast gene LON in intramitochondrial proteolysis and maintenance of respiration. Science 264:273–276.
  • Taanman, J.-W., and R. A. Capaldi. 1992. Subunit VIa of yeast cytochrome c oxidase is not necessary for assembly of the enzyme complex but modulates the enzyme activity. J. Biol. Chem. 267:22481–22485.
  • Thorsness, P. E., and T. D. Fox. 1993. Nuclear mutations in Saccharomyces cerevisiae that affect the escape of DNA from mitochondria to the nucleus. Genetics 134:21–28.
  • Thorsness, P. E., K. H. White, and T. D. Fox. 1993. Inactivation of YME1, a member of the ftsH-SEC18-PAS1-CDC48 family of putative ATPase-encoding genes, causes increased escape of DNA from mitochondria in Saccha-romyces cerevisiae. Mol. Cell. Biol. 13:5418–5426.
  • Tisdale, H. D. 1967. Preparation and properties of succinic-cytochrome c reductase (complex II-III). Methods Enzymol. 10:213–215.
  • Tomoyasu, T., T. Yuki, S. Morimura, H. Mori, K. Yamanaka, H. Niki, S. Hiraga, and T. Ogura. 1993. The Escherichia coli FtsH protein is a prokary-otic member of a protein family of putative ATPases involved in membrane functions, cell cycle control, and gene expression. J. Bacteriol. 175:1344–1351.
  • Towbin, H., T. Staehelin, and J. Gordon. 1979. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc. Natl. Acad. Sci. USA 76:4350–4354.
  • Van Dyck, L., D. A. Pearce, and F. Sherman. 1994. PIM1 encodes a mitochondrial ATP-dependent protease that is required for mitochondrial function in the yeast Saccharomyces cerevisiae. J. Biol. Chem. 269:238–242.
  • Wang, N., S. Gottesman, M. C. Willingham, M. M. Gottesman, and M. R. Maurizi. 1993. A human mitochondrial ATP-dependent protease that is highly homologous to bacterial Lon protease. Proc. Natl. Acad. Sci. USA 90:11247–11251.
  • Watabe, S., and T. Kimura. 1985. Adrenal cortex mitochondrial enzyme with ATP-dependent protease and protein-dependent ATPase activities: purifi-cation and properties. J. Biol. Chem. 260:14498–14504.
  • Watabe, S., and T. Kimura. 1985. ATP-dependent protease in bovine adrenal cortex: tissue specificity, subcellular localization, and partial characterization. J. Biol. Chem. 260:5511–5517.
  • Wilson, D. W., C. A. Wilcox, G. C. Flynn, C. Ellison, W.-J. Kuang, W. J. Henzel, M. R. Block, A. Ullrich, and J. E. Rothman. 1989. A fusion protein required for vesicle-mediated transport in both mammalian cells and yeast. Nature (London) 339:355–359.
  • Wong, S., and R. S. Molday. 1986. A spectrin-like protein in retinal rod outer segments. Biochemistry 25:6294–6300.
  • Yasuhara, T., Y. Mera, T. Nakai, and A. Ohashi. 1994. ATP-dependent proteolysis in yeast mitochondria. J. Biochem. (Tokyo) 115:1166–1171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.