15
Views
181
CrossRef citations to date
0
Altmetric
Research Article

The Structure and Function of P55PIK Reveal a New Regulatory Subunit for Phosphatidylinositol 3-Kinase

, , , , , , , & show all
Pages 4453-4465 | Received 15 Mar 1995, Accepted 18 May 1995, Published online: 30 Mar 2023

REFERENCES

  • Ahn, J., D. B. Donner, and O. M. Rosen. 1993. Interaction of the human insulin receptor tyrosine kinase from the baculovirus expression system with protein kinase C in a cell-free system. J. Biol. Chem. 268:7571–7576.
  • Araki, E., M. A. Lipes, M. E. Patti, J. C. Bruning, B. Haag III, R. S. Johnson, and C. R. Kahn. 1994. Alternative pathway of insulin signalling in mice with targeted disruption of the IRS-1 gene. Nature (London) 372:186–190.
  • Argetsinger, L. S., G. W. Hsu, M. G. Myers, Jr., N. Billestrup, G. Norstedt, M. F. White, and C. Carter-Su. Growth hormone, interferon-gamma, and leukemia inhibitory factor promoted tyrosyl phosphorylation of insulin receptor substrate-1. J. Biol. Chem., in press.
  • Backer, J. M., M. G. Myers, Jr., S. E. Shoelson, D. J. Chin, X. J. Sun, M. Miralpeix, P. Hu, B. Margolis, E. Y. Skolnik, J. Schlessinger, and M. F. White. 1992. The phosphatidylinositol 39-kinase is activated by association with IRS-1 during insulin stimulation. EMBO J. 11:3469–3479.
  • Backer, J. M., M. G. Myers, Jr., X. Sun, D. J. Chin, S. E. Shoelson, M. Miralpeix, and M. F. White. 1993. Association of IRS-1 with the insulin receptor and the phosphatidylinositol 39-kinase. J. Biol. Chem. 268:8204–8212.
  • Carrera, A. C., L. Rodriguez Borlado, C. Martinez Alonso, and I. Merida. 1994. T cell receptor-associated alpha-phosphatidylinositol 3-kinase becomes activated by T cell receptor cross-linking and requires pp56(lck). J. Biol. Chem. 269:19435–19440.
  • Cheatham, B., C. J. Vlahos, L. Cheatham, L. Wang, J. Blenis, and C. R. Kahn. 1994. Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter trans-location. Mol. Cell. Biol. 14:4902–4911.
  • Chuang, L. M., M. G. Myers, Jr., J. M. Backer, S. E. Shoelson, M. F. White, M. J. Birnbaum, and C. R. Kahn. 1993. Insulin-stimulated oocyte maturation requires insulin receptor substrate 1 and interaction with the SH2 domains of phosphatidylinositol 3-kinase. Mol. Cell. Biol. 13:6653–6660.
  • Chuang, L. M., M. G. Myers, Jr., G. A. Seidner, M. J. Birnbaum, M. F. White, and C. R. Kahn. 1993. Insulin receptor substrate 1 mediates insulin and insulin-like growth factor I-stimulated maturation of Xenopus oocytes. Proc. Natl. Acad. Sci. USA 90:5172–5175.
  • Chung, J., T. C. Grammer, K. P. Lemon, A. Kazlauskas, and J. Blenis. 1994. PDGF- and insulin-dependent pp70S6k activation mediated by phosphati-dylinositol-3-OH kinase. Nature (London) 370:71–75.
  • Dhand, R., K. Hara, I. Hiles, B. Bax, I. Gout, G. Panayotou, M. J. Fry, K. Yonezawa, M. Kasuga, and M. D. Waterfield. 1994. PI 3-kinase: structural and functional analysis of intersubunit interactions. EMBO J. 13:511–521.
  • Dhand, R., I. Hiles, G. Panayotou, S. Roche, M. J. Fry, I. Gout, N. F. Totty, O. Truong, P. Vicendo, K. Yonezawa, M. Kasuga, S. A. Courtneidge, and M. D. Waterfield. 1994. PI-3-kinase is a dual specificity enzyme—autoregu-lation by an intrinsic protein-serine kinase activity. EMBO J. 13:522–533.
  • Exley, M., L. Varticovski, M. Peter, J. Sancho, and C. Terhorst. 1994. Association of phosphatidylinositol 3-kinase with a specific sequence of the T cell receptor j chain is dependent on T-cell activation. J. Biol. Chem. 269:15140–15146.
  • Feener, E. P., J. M. Backer, G. L. King, P. A. Wilden, X. J. Sun, C. R. Kahn, and M. F. White. 1993. Insulin stimulates serine and tyrosine phosphorylation in the juxtamembrane region of the insulin receptor. J. Biol. Chem. 268:11256–11264.
  • Gold, M. R., V. Duronio, S. P. Saxena, J. W. Schrader, and R. Aebersold. 1994. Multiple cytokines activate phosphatidylinositol 3-kinase in hemopoi-etic cells. J. Biol. Chem. 269:5403–5412.
  • Hara, K., K. Yonezawa, H. Sakaue, A. Ando, K. Kotani, T. Kitamura, Y. Kitamura, H. Ueda, L. Stephens, T. R. Jackson, P. T. Hawkins, R. Dhand, A. E. Clark, G. D. Holman, M. D. Waterfield, and M. Kasuga. 1994. 1-Phos-phatidylinositol 3-kinase activity is required for insulin-stimulated glucose transport but not for ras activation in CHO cells. Proc. Natl. Acad. Sci. USA 91:7415–7419.
  • Hayashi, H., Y. Nishioka, S. Kamohara, F. Kanai, K. Ishii, Y. Fukui, F. Shibasaki, T. Takenawa, H. Kido, N. Katsunuma, and Y. Ebina. 1993. The α-type 85-kDa subunit of phosphatidylinositol 3-kinase is phosphorylated at tyrosines 368, 580, and 607 by the insulin receptor. J. Biol. Chem. 268:7107–7117.
  • Herrera, R., D. Lebwohl, A. Garcia de Herreros, R. G. Kallen, and O. M. Rosen. 1988. Synthesis, purification and characterization of the cytoplasmic domain of the human insulin receptor using a baculovirus expression system. J. Biol. Chem. 263:5560–5568.
  • Hosomi, Y., K. Shii, W. Ogawa, H. Matsuba, M. Yoshida, Y. Okada, K. Yokono, M. Kasuga, S. Baba, and R. Roth. 1994. Characterization of a 60-kilodalton substrate of the insulin receptor kinase. J. Biol. Chem. 269: 11498–11502.
  • Hu, P., B. Margolis, E. Y. Skolnik, R. Lammers, A. Ullrich, and J. Schlessinger. 1992. Interactions of phosphatidylinositol 3-kinase-associated p85 with epidermal growth factor and platelet-derived growth factor receptors. Mol. Cell. Biol. 12:981–990.
  • Hu, P., A. Mondino, E. Y. Skolnik, and J. Schlessinger. 1993. Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol. Cell. Biol. 13:7677–7688.
  • Kapeller, R., and L. C. Cantley. 1994. Phosphatidylinositol 3-kinase. Bioes-says 16:565–576.
  • Kapeller, R., R. Chakrabarti, L. Cantley, F. Fay, and S. Corvera. 1993. Internalization of activated platelet-derived growth factor receptor–phos-phatidylinositol 39-kinase complexes: potential interactions with the micro-tubule cytoskeleton. Mol. Cell. Biol. 13:6052–6063.
  • Kapeller, R., K. V. S. Prasad, O. Janssen, W. Hou, B. S. Schaffhausen, C. E. Rudd, and L. C. Cantley. 1994. Identification of two SH3-binding motifs in the regulatory subunit of phosphatidylinositol 3-kinase. J. Biol. Chem. 269: 1927–1933.
  • Kaplan, D. R., M. Whitman, B. Schaffhausen, D. C. Pallas, M. F. White, L. Cantley, and T. M. Roberts. 1987. Common elements in growth factor stimulation and oncogenic transformation: 85 kDa phosphoprotein and phosphatidylinositol kinase activity. Cell 50:1021–1029.
  • Kelly, K. L., and N. B. Ruderman. 1993. Insulin-stimulated phosphatidylino-sitol 3-kinase: association with a 185-kDa tyrosine-phosphorylated protein (IRS-1) and localization in a low density membrane vesicle. J. Biol. Chem. 268:4391–4398.
  • Kimura, K., S. Hattori, Y. Kabuyama, Y. Shizawa, J. Takayanagi, S. Nakamura, S. Toki, Y. Matsuda, K. Onodera, and Y. Fukui. 1994. Neurite outgrowth of PC12 cells is suppressed by wortmannin, a specific inhibitor of phosphatidylinositol 3-kinase. J. Biol. Chem. 269:18961–18967.
  • Klippel, A., J. A. Escobedo, M. Hirano, and L. T. Williams. 1994. The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol. Cell. Biol. 14:2675–2685.
  • Kotani, K., K. Yonezawa, K. Hara, H. Ueda, Y. Kitamura, H. Sakaue, A. Ando, A. Chavanieu, B. Calas, F. Grigorescu, M. Nishiyama, M. D. Waterfield, and M. Kasuga. 1994. Involvement of phosphoinositide 3-kinase in insulin- or IGF-1-induced membrane ruffling. EMBO J. 13:2313–2321.
  • Kozak, M. 1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292.
  • Kundra, V., J. A. Escobedo, A. Kazlauskas, H. K. Kim, S. G. Rhee, L. T. Williams, and B. R. Zetter. 1994. Regulation of chemotaxis by the platelet-derived growth factor receptor-β. Nature (London) 367:474–476.
  • Lam, K., C. L. Carpenter, N. B. Ruderman, J. C. Friel, and K. L. Kelly. 1994. The phosphatidylinositol 3-kinase serine kinase phosphorylates IRS-1. J. Biol. Chem. 269:20648–20652.
  • Lavan, B. E., and G. E. Lienhard. 1993. The insulin-elicited 60-kDa phos-photyrosine protein in rat adipocytes is associated with phosphatidylinositol 3-kinase. J. Biol. Chem. 268:5921–5928.
  • Lechleider, R. J., S. Sugimoto, A. M. Bennett, A. S. Kashishian, J. A. Cooper, S. E. Shoelson, C. T. Walsh, and B. G. Neel. Activation of the SH2-containing phosphotyrosine phosphatase SH-PTP2 by its binding site, phosphoty-rosine 1009, on the human platelet-derived growth factor receptor B. J. Biol. Chem., in press.
  • Lee, C. H., W. Li, R. Nishimura, M. Zhou, A. Batzer, M. G. Myers, Jr., M. F. White, J. Schlessinger, and E. Y. Skolnik. 1993. Nck associates with the SH2 domain docking protein IRS-1 in insulin stimulated cells. Proc. Natl. Acad. Sci. USA 90:11713–11717.
  • Margolis, B., O. Silvennoinen, F. Comoglio, C. Roonprapunt, E. Skolnik, A. Ullrich, and J. Schlessinger. 1992. High-efficiency expression/cloning of epidermal growth factor-receptor-binding proteins with Src homology domains. Proc. Natl. Acad. Sci. USA 89:8894–8898.
  • Miralpeix, M., X. J. Sun, J. M. Backer, M. G. Myers, Jr., E. Araki, and M. F. White. 1992. Insulin stimulates tyrosine phosphorylation of multiple high molecular weight substrates in FAO hepatoma cells. Biochemistry 31:9031–9039.
  • Mooney, R. A., and K. L. Bordwell. 1992. Insulin stimulates the tyrosine phosphorylation of a 61-kilodalton protein in rat adipocytes. Endocrinology 130:1533–1538.
  • Myers, M. G., Jr., J. M. Backer, X. J. Sun, S. E. Shoelson, P. Hu, J. Schlessinger, M. Yoakim, B. Schaffhausen, and M. F. White. 1992. IRS-1 activates the phosphatidylinositol 39-kinase by associating with the src homology 2 domains of p85. Proc. Natl. Acad. Sci. USA 89:10350–10354.
  • Myers, M. G., Jr., T. C. Grammer, L. M. Wang, X. J. Sun, J. H. Pierce, J. Blenis, and M. F. White. 1994. IRS-1 mediates PI 39-kinase and p70s6k signaling during insulin, IGF-1 and IL-4 stimulation. J. Biol. Chem. 269: 28783–28789.
  • Myers, M. G., Jr., X. J. Sun, and M. F. White. 1994. The IRS-1 signaling system. Trends Biochem. Sci. 19:289–294.
  • Ninomiya, N., K. Hazeki, Y. Fukui, T. Seya, T. Okada, O. Hazeki, and M. Ui. 1994. Involvement of phosphatidylinositol 39-kinase in Fc gamma receptor signaling. J. Biol. Chem. 269:22732–22737.
  • Niwa, H., K. Yamamura, and J. Miyazaki. 1994. Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108:193–199.
  • Okada, T., Y. Kawano, T. Sakakibara, O. Hazeki, and M. Ui. 1994. Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. J. Biochem. 269:3568–3573.
  • Okada, T., L. Sakuma, Y. Fukui, O. Hazeki, and M. Ui. 1994. Blockage of chemotactic peptide-induced stimulation of neutrophils by wortmannin as a result of selective inhibition of phosphatidylinositol 3-kinase. J. Biochem. 269:3563–3567.
  • Prasad, K. V. S., R. Kapeller, O. Janssen, H. Repke, J. S. Duke-Cohan, L. C. Cantley, and C. E. Rudd. 1993. Phosphatidylinositol (PI) 3-kinase and PI 4-kinase binding to the CD4-p56lck complex: the p56lck SH3 domain binds to PI 3-kinase but not PI 4-kinase. Mol. Cell. Biol. 13:7708–7717.
  • Roche, S., R. Dhand, M. D. Waterfield, and S. A. Courtneidge. 1994. The catalytic subunit of phosphatidylinositol 3-kinase is a substrate for the activated platelet-derived growth factor receptor, but not for middle-t antigen pp60(c-src) complexes. Biochem. J. 301:703–711.
  • Ruderman, N., R. Kapeller, M. F. White, and L. C. Cantley. 1990. Activation of phosphatidylinositol-3-kinase by insulin. Proc. Natl. Acad. Sci. USA 87: 1411–1415.
  • Schu, P. V., T. Kaoru, M. J. Fry, J. H. Stack, M. D. Waterfield, and S. D. Emr. 1993. Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 260:88–91.
  • Shimizu, Y., and T. Shimazu. 1994. Effects of wortmannin on increased glucose transport by insulin and norepinephrine in primary culture of brown adipocytes. Biochem. Biophys. Res. Commun. 202:660–665.
  • Shpetner, H. S., and R. B. Vallee. 1989. Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59:421–432.
  • Songyang, Z., S. E. Shoelson, M. Chaudhuri, G. Gish, T. Roberts, S. Ratnofsky, R. J. Lechleider, B. G. Neel, R. B. Birge, J. E. Fajardo, M. M. Chou, H. Hanafusa, B. Schaffhausen, and J. C. Cantley. 1993. SH2 domains rec-ognized specific phosphopeptide sequences. Cell 72:767–778.
  • Souza, S. C., G. P. Frick, R. Yip, R. B. Lobo, L.-R. Tai, and H. M. Goodman. 1994. Growth hormone stimulates tyrosine phosphorylation of insulin receptor substrate-1. J. Biol. Chem. 269:30085–30088.
  • Sugimoto, S., R. J. Lechleider, S. E. Shoelson, B. G. Neel, and C. T. Walsh. 1994. Expression, purification and characterization of SH2-containing protein tyrosine phosphatase, SH-PTP2. J. Biol. Chem. 269:13614–13622.
  • Sullivan, S., and T. W. Wong. 1991. A manual sequencing method for identification of phosphorylated amino acids in phosphopeptides. Anal. Biochem. 197:65–68.
  • Sun, X. J., D. L. Crimmins, M. G. Myers, Jr., M. Miralpeix, and M. F. White. 1993. Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol. Cell. Biol. 13:7418–7428.
  • Sun, X. J., M. Miralpeix, M. G. Myers, Jr., E. M. Glasheen, J. M. Backer, C. R. Kahn, and M. F. White. 1992. The expression and function of IRS-1 in insulin signal transmission. J. Biol. Chem. 267:22662–22672.
  • Sun, X. J., P. Rothenberg, C. R. Kahn, J. M. Backer, E. Araki, P. A. Wilden, D. A. Cahill, B. J. Goldstein, and M. F. White. 1991. The structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature (London) 352:73–77.
  • Thies, R. S., J. M. Molina, T. P. Ciaraldi, G. R. Freidenberg, and J. M. Olefsky. 1990. Insulin-receptor autophosphorylation and endogenous substrate phosphorylation in human adipocytes from control, obese, and NIDDM subjects. Diabetes 39:250–259.
  • Torres-Aleman, I., S. Pons, and M. A. Arevalo. 1994. The insulin-like growth factor-1 system in the rat cerebellum: developmental regulation and role in neuronal survival and differentiation. J. Neurosci. Res. 39:117–126.
  • Valius, M., and A. Kazlauskas. 1993. Phospholipase C-gamma 1 and phos-phatidylinositol 3 kinase are the downstream mediators of the PDGF receptor's mitogenic signal. Cell 73:321–334.
  • Volina, S., I. Miles, E. Ormondroyd, D. Nizetic, R. Antonacci, M. Rocchi, and M. Waterfield. 1994. Molecular cloning, cDNA sequence, and chromosomal localization of the human phosphatidylinositol 3-kinase p110α (PIK3CA) gene. Genomics 24:472–477.
  • Wang, L. M., M. G. Myers, Jr., X. J. Sun, S. A. Aaronson, M. F. White, and J. H. Pierce. 1993. IRS-1: essential for insulin and IL-4-stimulated mitogen-esis in hematopoietic cells. Science 261:1591–1594.
  • Wennstrom, S., P. Hawkins, F. Cooke, K. Hara, K. Yonezawa, M. Kasuga, T. Jackson, L. Claesson-Welsh, and L. Stephens. 1994. Activation of phospho-inositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr. Biol. 4:385–393.
  • White, M. F., S. E. Shoelson, H. Keutmann, and C. R. Kahn. 1988. A cascade of tyrosine autophosphorylation in the b-subunit activates the insulin receptor. J. Biol. Chem. 263:2969–2980.
  • White, M. F., E. W. Stegmann, T. J. Dull, A. Ullrich, and C. R. Kahn. 1987. Characterization of an endogenous substrate of the insulin receptor in cultured cells. J. Biol. Chem. 262:9769–9777.
  • Yao, R., and G. M. Cooper. 1995. Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267: 2003–2006.
  • Yin, T., M. L.-S. Tsang, and Y.-C. Yang. 1994. JAK1 kinase forms complexes with interleukin-4 receptor and 4PS/insulin receptor substrate-1-like protein and is activated by interleukin-4 and interleukin-9 in T lymphocytes. J. Biol. Chem. 269:26614–26617.
  • Zhang, B., and R. A. Roth. 1992. The insulin receptor-related receptor: tissue expression, ligand binding specificity, and signaling capabilities. J. Biol. Chem. 267:18320–18328.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.