6
Views
76
CrossRef citations to date
0
Altmetric
Research Article

Analysis of the Role of TFIIE in Basal Transcription and TFIIH-Mediated Carboxy-Terminal Domain Phosphorylation through Structure-Function Studies of TFIIE-α

, , , &
Pages 4856-4866 | Received 09 Feb 1995, Accepted 25 May 1995, Published online: 30 Mar 2023

REFERENCES

  • Bartolomei, M. S., N. F. Halden, C. R. Cullen, and J. L. Corden. 1988. Genetic analysis of the repetitive carboxy-terminal domain of the largest subunit of mouse RNA polymerase II. Mol. Cell. Biol. 8:330–339.
  • Bunick, D., R. Zandomeni, S. Ackerman, and R. Weinmann. 1982. Mechanism of RNA polymerase II specific initiation of transcription: ATP requirement and uncapped run-off transcripts. Cell 29:877–886.
  • Chesnut, J. D., J. H. Stephens, and M. E. Dahmus. 1992. The interaction of RNA polymerase II with the adenovirus-2 major late promoter is precluded by phosphorylation of the C-terminal of subunit IIa. J. Biol. Chem. 267: 10500–10506.
  • Chiang, C.-M., H. Ge, Z. Wang, A. Hoffmann, and R. G. Roeder. 1993. Unique TATA-binding protein-containing complexes and cofactors involved in transcription by RNA polymerase II and III. EMBO J. 12:2749–2762.
  • Chodosh, L. A., A. Fire, M. Samuels, and P. A. Sharp. 1989. 5,6-Dichloro-1-β-D-ribofuranosylbenzimidazole inhibits transcription elongation by RNA polymerase II in vitro. J. Biol. Chem. 264:2250–2257.
  • Choy, B., and M. R. Green. 1993. Eukaryotic activators function during multiple steps of preinitiation complex assembly. Nature (London) 366:531–536.
  • Coleman, J. E. 1992. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu. Rev. Biochem. 61:897–946.
  • Conaway, R. C., and J. W. Conaway. 1993. General initiation factors for RNA polymerase II. Annu. Rev. Biochem. 62:161–190.
  • Corden, J. L. 1990. Tails of RNA polymerase II. Trends Biochem. Sci. 15:383–387.
  • Drapkin, R., J. T. Reardon, A. Ansali, J.-C. Huang, L. Zawel, K. Ahn, A. Sancar, and D. Reinberg. 1994. Dual role of TFIIH in DNA excision repair and in transcription by RNA polymerase II. Nature (London) 368:769–772.
  • Feaver, W. J., J. Q. Svejstrup, L. Bardwell, A. J. Bardwell, S. Buratowski, K. D. Gulyas, T. F. Donahue, E. C. Friedberg, and R. D. Kornberg. 1993. Dual roles of a multiprotein complex from S. cerevisiae in transcription and DNA repair. Cell 75:1379–1387.
  • Feaver, W. J., J. Q. Svejstrup, N. L. Henry, and R. D. Kornberg. 1994. Relationship of CDK-activating kinase and RNA polymerase II CTD kinase TFIIH/TFIIK. Cell 79:1103–1109.
  • Fischer, L., M. Gerard, C. Chalut, Y. Lutz, S. Humbert, M. Kanno, P. Chambon, and J.-M. Egly. 1992. Cloning of the 62-kilodalton component of basic transcription factor BTF2. Science 257:1392–1395.
  • Flores, O., H. Lu, and D. Reinberg. 1992. Factors involved in specific transcription by mammalian RNA polymerase II. Identification and characterization of factor IIH. J. Biol. Chem. 267:2786–2793.
  • Flores, O., E. Maldonado, and D. Reinberg. 1989. Factors involved in specific transcription by mammalian RNA polymerase II. Factors IIE and IIF independently interact with RNA polymerase II. J. Biol. Chem. 264:8913–8921.
  • Goodrich, J. A., T. Hoey, C. J. Thut, A. Admon, and R. Tjian. 1993. Dro-sophila TAFII40 interacts with both a VP16 activation domain and the basal transcription factor TFIIB. Cell 75:519–530.
  • Goodrich, J. A., and R. Tjian. 1994. Transcription factors IIE and IIH and ATP hydrolysis direct promoter clearance by RNA polymerase II. Cell 77: 145–156.
  • Hoey, T., R. O. Weinzierl, G. Gill, J. L. Chen, B. D. Dynlacht, and R. Tjian. 1993. Molecular cloning and functional analysis of Drosophila TAF110 reveal properties expected of coactivators. Cell 72:247–260.
  • Hoffmann, A., and R. G. Roeder. 1991. Purification of his-tagged proteins in non-denaturing conditions suggests a convenient method for protein interaction studies. Nucleic Acids Res. 19:6337.
  • Horikoshi, M., T. Hai, Y.-S. Lin, M. R. Green, and R. G. Roeder. 1988. Transcription factor ATF interacts with the TATA factor to facilitate establishment of a preinitiation complex. Cell 54:1033–1042.
  • Horikoshi, M., T. Yamamoto, Y. Ohkuma, P. A. Weil, and R. G. Roeder. 1990. Analysis of structure-function relationship of yeast TATA box bining factor TFIID. Cell 61:1171–1178.
  • Ingles, C. J., M. Shales, W. D. Cress, S. Triezenberg, and J. Greenblatt. 1991. Reduced binding of TFIID to transcriptionally compromised mutants of VP16. Nature (London) 351:588–590.
  • Inostroza, J., O. Flores, and D. Reinberg. 1991. Factors involved in specific transcription by mammalian RNA polymerase II: purification and functional analysis of general transcription factor IIE. J. Biol. Chem. 266:9304–9308.
  • Jacob, G. A., J. A. Kitzmiller, and D. S. Luse. 1994. RNA polymerase II promoter strength in vitro may be reduced by defects at initiation or pro moter clearance. J. Biol. Chem. 269:3655–3663.
  • Jiang, Y., and J. D. Gralla. 1993. Uncoupling of initiation and reinitiation rates during HeLa RNA polymerase II transcription in vitro. Mol. Cell. Biol. 13:4572–4577.
  • Jiang, Y., S. T. Smale, and J. D. Gralla. 1993. A common ATP requirement for open complex formation and transcription at promoters containing initiator or TATA elements. J. Biol. Chem. 268:6535–6540.
  • Jiang, Y., S. J. Triezenberg, and J. D. Gralla. 1994. Defective transcriptional activation by diverse VP16 mutants associated with a common inability to form open promoter complexes. J. Biol. Chem. 269:5505–5508.
  • Kim, T. K., and R. G. Roeder. 1993. Transcriptional activation in yeast by the proline-rich activation domain of human CTF1. J. Biol. Chem. 268:20866–20868.
  • Kim, T. K., and R. G. Roeder. 1994. The proline-rich activator CTF1 targets TFIIB for transcriptional activation. Proc. Natl. Acad. Sci. USA 91:4170–4174.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selections. Methods. Enzymol. 154:367–382.
  • Laybourn, P. J., and M. E. Dahmus. 1989. Transcription-dependent structural changes in the C-terminal domain of mammalian RNA polymerase subunit IIa/o. J. Biol. Chem. 264:6693–6698.
  • Laybourn, P. J., and M. E. Dahmus. 1990. Phosphorylation of RNA polymerase IIA occurs subsequent to interaction with the promoter and before the initiation of transcription. J. Biol. Chem. 265:13165–13173.
  • Li, Y., and R. D. Kornberg. 1994. Interplay of positive and negative effectors in function of the C-terminal repeat domain of RNA polymerase II. Proc. Natl. Acad. Sci. USA 91:2362–2366.
  • Liao, S.-M., I. C. A. Taylor, R. E. Kingston, and R. A. Young. 1991. RNA polymerase II carboxy-terminal domain contributes to the response to multiple acidic activators in vitro. Genes Dev. 5:2431–2440.
  • Lin, Y.-S., and M. R. Green. 1991. Mechanism of activation of an acidic transcriptional activator in vitro. Cell 64:971–981.
  • Lin, Y.-S., I. Ha, E. Maldonado, D. Reinberg, and M. R. Green. 1991. Binding of general transcription factor TFIIB to an acidic activator region. Nature (London) 353:569–571.
  • Lu, H., O. Flores, R. Weinmann, and D. Reinberg. 1991. The nonphos-phorylated form of RNA polymerase II preferentially associates with the preinitiation complex. Proc. Natl. Acad. Sci. USA 88:10004–10008.
  • Lu, H., L. Zawel, L. Fisher, J.-M. Egly, and D. Reinberg. 1992. Human general transcription factor IIH phosphorylates the C-terminal domain of RNA polymerase II. Nature (London) 358:641–645.
  • Malik, S., K. Hisatake, H. Sumimoto, M. Horikoshi, and R. G. Roeder. 1991. Sequence of general transcription factor TFIIB and relationships to other initiation factors. Proc. Natl. Acad. Sci. USA 88:9553–9557.
  • Marshall, N. F., and D. H. Price. 1992. Control of formation of two distinct classes of RNA polymerase II elongation complexes. Mol. Cell. Biol. 12: 2078–2090.
  • Maxon, M. E., and R. Tjian. 1994. Transcriptional activity of transcription factor IIE is dependent on zinc binding. Proc. Natl. Acad. Sci. USA 91:9529–9533.
  • McClure, W. R. 1985. Mechanism and control of transcription initiation in prokaryotes. Annu. Rev. Biochem. 54:171–204.
  • Mitchell, P. J., and R. Tjian. 1989. Transcriptional regulation in mammalian cells by sequence-specific DNA binding proteins. Science 245:371–378.
  • O'Brien, T., S. Hardin, A. Greenleaf, and J. Lis. 1994. Phosphorylation of RNA polymerase II C-terminal domain and transcriptional elongation. Nature (London) 370:75–77.
  • Ohkuma, Y., S. Hashimoto, R. G. Roeder, and M. Horikoshi. 1992. Identification of two large subdomains in TFIIE-α on the basis of homology between Xenopus and human sequences. Nucleic Acids Res. 20:5838.
  • Ohkuma, Y., and R. G. Roeder. 1994. Regulatory effect of TFIIE on both ATPase and kinase activities of TFIIH during active initiation complex formation. Nature (London) 368:160–163.
  • Ohkuma, Y., and R. G. Roeder. Unpublished results.
  • Ohkuma, Y., H. Sumimoto, A. Hoffmann, S. Shimasaki, M. Horikoshi, and R. G. Roeder. 1991. Structural motifs and potential s homologies in the large subunit of human general transcription factor TFIIE. Nature (London) 354:398–401.
  • Ohkuma, Y., H. Sumimoto, M. Horikoshi, and R. G. Roeder. 1990. Factors involved in specific transcription by mammalian RNA polymerase II: purification and characterization of general transcription factor TFIIE. Proc. Natl. Acad. Sci. USA 87:9163–9167.
  • Parvin, J. D., and P. Sharp. 1993. DNA topology and a minimal set of basal factors for transcription by RNA polymerase II. Cell 73:533–540.
  • Payne, J. M., P. J. Laybourn, and M. E. Dahmus. 1989. The transition of RNA polymerase II from initiation to elongation is associated with phos-phorylation of the carboxyl-terminal domain of subunit IIa. J. Biol. Chem. 264:19621–19629.
  • Peterson, M. G., J. Inostroza, M. E. Maxon, O. Flores, A. Admon, D. Reinberg, and R. Tjian. 1991. Structure and function of the recombinant subunits of human TFIIE. Nature (London) 354:369–373.
  • Reinberg, D. Personal communication.
  • Roeder, R. G. 1991. The complexities of eukaryotic transcription initiation: regulation of preinitiation complex assembly. Trends Biochem. Sci. 16:402–408.
  • Roy, R., J. P. Adamczewski, T. Seroz, W. Vermeulen, J.-P. Tassan, L. Schaeffer, E. A. Nigg, J. H. J. Hoeijmakers, and J.-M. Egly. 1994. The MO15 cell cycle kinase is associated with the TFIIH transcription-DNA repair factor. Cell 79:1093–1101.
  • Roy, R., L. Schaeffer, S. Humbert, W. Vermeulen, G. Weeda, and J.-M. Egly. 1994. The DNA-dependent ATPase activity associated with the class II basic transcription factor BTF2/TFIIH. J. Biol. Chem. 269:9826–9832.
  • Sadowski, I., J. Ma, S. Triezenberg, and M. Ptashne. 1988. GAL4-VP16 is an unusually potent transcriptional activator. Nature (London) 335:563–564.
  • Sawadogo, M., and R. G. Roeder. 1984. Energy requirement for specific transcription initiation by the human RNA polymerase II system. J. Biol. Chem. 259:5321–5326.
  • Sawadogo, M., and R. G. Roeder. 1985. Factors involved in specific transcription by human RNA polymerase II: analysis by rapid and quantitative in vitro assay. Proc. Natl. Acad. Sci. USA 82:4394–4398.
  • Scafe, C., D. Chao, J. Lopes, J. P. Hirsch, S. Henry, and R. A. Young. 1990. RNA polymerase II C-terminal repeat influences response to transcriptional enhancer signals. Nature (London) 347:491–494.
  • Schaeffer, L., R. Roy, S. Humbert, V. Moncollin, W. Vermeulen, J. H. J. Hoejimakers, P. Chambon, and J.-M. Egly. 1993. DNA repair helicase: a component of BTF2 (TFIIH) basic transcription factor. Science 260:58–63.
  • Serizawa, H., J. W. Conaway, and R. C. Conaway. 1993. Phosphorylation of C-terminal domain of RNA polymerase II is not required in basal transcription. Nature (London) 363:371–374.
  • Serizawa, H., R. C. Conaway, and J. W. Conaway. 1993. Multifunctional RNA polymerase II initiation factor δ from rat liver: relationship between carboxyl-terminal domain kinase, ATPase, and DNA helicase activities. J. Biol. Chem. 268:17300–17308.
  • Studier, W., A. H. Rosenberg, J. J. Dunn, and J. W. Dubendorff. 1990. Use of T7 RNA polymerase to direct expression of cloned genes. Methods En-zymol. 185:60–89.
  • Sumimoto, H., Y. Ohkuma, E. Sinn, H. Kato, S. Shimasaki, M. Horikoshi, and R. G. Roeder. 1991. Conserved sequence motifs in the small subunit of human general transcription factor TFIIE. Nature (London) 354:401–404.
  • Sumimoto, H., Y. Ohkuma, T. Yamamoto, M. Horikoshi, and R. G. Roeder. 1990. Factors involved in specific transcription by mammalian RNA polymerase II: identification of general transcription factor TFIIG. Proc. Natl. Acad. Sci. USA 87:9158–9162.
  • Takada, R., Y. Nakatani, A. Hoffmann, T. Kokubo, S. Hasegawa, R. G. Roeder, and M. Horikoshi. 1992. Identification of human TFIID components and direct interaction between a 250-kDa polypeptide and the TATA box-binding protein (TFIIDt). Proc. Natl. Acad. Sci. USA 89:11809–11813.
  • Timmers, H. T. M. 1994. Transcription initiation by RNA polymerase II does not require hydrolysis of the β-γ phosphoanhydride bond of ATP. EMBO J. 13:391–399.
  • Usheva, A., E. Maldonado, A. Golding, H. Lu, D. Houbavi, D. Reinberg, and Y. Aloni. 1992. Specific interaction between the nonphosphorylated form of RNA polymerase II and the TATA-binding protein. Cell 69:871–881.
  • Van Dyke, M. W., M. Sawadogo, and R. G. Roeder. 1989. Stability of transcription complex on class II genes. Mol. Cell. Biol. 9:342–344.
  • von Hippel, P. H., D. G. Bear, W. D. Morgan, and J. A. McSwigger. 1984. Protein-nucleic acid interactions in transcription: a molecular analysis. Annu. Rev. Biochem. 53:389–446.
  • Wampler, S. L., and J. T. Kadonaga. 1992. Functional analysis of Drosophila transcription factor IIB. Genes Dev. 6:1542–1552.
  • Wang, W., M. Carey, and J. D. Gralla. 1992. Polymerase II promoter activation: closed complex formation and ATP-driven start site opening. Science 255:450–453.
  • Wang, W., J. D. Gralla, and M. Carey. 1992. The acidic activator GAL4-AH can stimulate polymerase II transcription by promoting assembly of a closed complex requiring TFIID and TFIIA. Genes Dev. 6:1716–1727.
  • Weeks, J. R., S. E. Hardin, J. Shen, J. M. Lee, and A. L. Greenleaf. 1993. Locus-specific variation in phosphorylation state of RNA polymerase II in vivo: correlation with gene activity and transcript processing. Genes Dev. 7:2329–2344.
  • Werner, M., S. Hermann-Le Denmat, I. Treich, A. Sentenac, and P. Thuriaux. 1992. Effect of mutations in a zinc-binding domain of yeast RNA polymerase C (III) on enzyme function and subunit association. Mol. Cell. Biol. 12:1087–1095.
  • Workman, J. L., S. M. Abmayr, W. A. Cromlish, and R. G. Roeder. 1988. Transcriptional regulation by the immediate early protein of pseudorabies virus during in vitro nucleosome assembly. Cell 55:211–219.
  • Yano, R., and M. Nomura. 1991. Suppressor analysis of temperature-sensitive mutations of the largest subunit of RNA polymerase I in Saccharomyces cerevisiae: a suppressor gene encodes the second-largest subunit of RNA polymerase I. Mol. Cell. Biol. 11:754–764.
  • Young, R. A. 1991. RNA polymerase II. Annu. Rev. Biochem. 60:689–715.
  • Zawel, L., and D. Reinberg. 1993. Initiation of transcription by RNA polymerase II: a multi-step process. Prog. Nucleic Acid Res. Mol. Biol. 44:67–108.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.