1
Views
43
CrossRef citations to date
0
Altmetric
Research Article

The Duplicated Saccharomyces cerevisiae Gene SSM1 Encodes a Eucaryotic Homolog of the Eubacterial and Archaebacterial L1 Ribosomal Proteins

, &
Pages 5071-5081 | Received 21 Nov 1994, Accepted 27 Jun 1995, Published online: 30 Mar 2023

REFERENCES

  • Adoutte-Panvier, A., J. E. Davies, L. R. Gritz, and B. S. Littlewood. 1980. Studies of ribosomal proteins of yeast species and their hybrids gel electrophoresis and immunochemical cross-reactions. Mol. Gen. Genet. 179:273–282.
  • All-Robyn, J. A., N. Brown, E. Otaka, and S. W. Liebman. 1990. Sequence and functional similarity between a yeast ribosomal protein and the Esche-richia coli S5 ram protein. Mol. Cell. Biol. 10:6544–6553.
  • Baronas-Lowell, D. M., and J. R. Warner. 1990. Ribosomal protein L30 is dispensable in the yeast Saccharomyces cerevisiae. Mol. Cell. Biol. 10:5235–5243.
  • Bloch, J. C., F. Perrin, and F. Lacroute. 1978. Yeast temperature-sensitive mutants impaired in processing of poly(A)-containing RNAs. Mol. Gen. Genet. 165:123–127.
  • Bonneaud, N., L. Minvielle-Sebastia, C. Culin, and F. Lacroute. 1994. Cellular localization of RNA14p and RNA15p, two yeast proteins involved in mRNA stability. J. Cell. Sci. 107:913–921.
  • Bonneaud, N., O. Ozier-Kalogeropoulos, G. Li, M. Labouesse, L. Minvielle-Sebastia, and F. Lacroute. 1991. A family of low and high copy replicative, integrative and single-stranded S. cerevisiae/E. coli shuttle vectors. Yeast 7:609–615.
  • Branlant, C., A. Krol, A. Machatt, and J.-P. Ebel. 1981. The secondary structure of the protein L1 binding region of ribosomal 23S RNA. Homologies with putative secondary structures of the L11 mRNA and of a region of mitochondrial 16S rRNA. Nucleic Acids Res. 9:293–307.
  • Bujard, H. Personal communication.
  • Chevallier, M. R., J. C. Bloch, and F. Lacroute. 1980. Transcriptional and translational expression of a chimeric bacterial-yeast plasmid in yeasts. Gene 11:11–19.
  • Cigan, A. M., and T. F. Donahue. 1987. Sequence and structural features associated with translational initiator regions in yeast—a review. Gene 59: 1–18.
  • Dabbs, E. R., R. Ehrlich, R. Hasenbank, B. Schroeter, M. Stöffler-Meilicke, and G. Stöffler. 1981. Mutants of Escherichia coli lacking ribosomal protein L1. J. Mol. Biol. 149:579–597.
  • De Lange, T., P. A. M. Michels, H. J. G. Veerman, A. W. C. A. Cornelissen, and P. Borst. 1984. Many trypanosome messenger RNAs share a common 59 terminal sequence. Nucleic Acids Res. 12:3777–3790.
  • Della Seta, F., S.-A. Ciafré, C. Marck, B. Santoro, C. Presutti, A. Sentenac, and I. Bozzoni. 1990. The ABF1 factor is the transcriptional activator of the L2 ribosomal protein genes in Saccharomyces cerevisiae. Mol. Cell. Biol. 10:2437–2441.
  • Dorsman, J. C., M. M. Doorenbosch, C. T. C. Maurer, J. H. DeWinde, R. J. Mager, R. J. Planta, and C. A. Grivell. 1989. An ARS/silencer binding factor also activates two ribosomal protein genes in yeast. Nucleic Acids Res. 17:4917–4923.
  • El-Baradi, T. T. A. L., V. C. H. F. de Regt, S. W. C. Einerhand, J. Teixido, R. J. Planta, J. P. G. Ballesta, and H. A. Raué. 1987. Ribosomal proteins EL11 from Escherichia coli and L15 from Saccharomyces cerevisiae bind to the same site in both yeast 26S and mouse 28S rRNA. J. Mol. Biol. 195:909–917.
  • El-Baradi, T. T. A. L., H. A. Raué, V. C. H. F. de Regt, E. C. Verbree, and R. G. Planta. 1985. Yeast protein ribosomal L25 binds to an evolutionary conserved site on yeast 26S and E. coli 23S rRNA. EMBO J. 4:2101–2107.
  • Feinberg, A. P., and B. Vogelstein. 1984. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Foiani, M., A. M. Cigan, C. J. Paddon, S. Harashima, and A. G. Hinnebusch. 1991. GCD2, a translational repressor of the GCN4 gene, has a general function in the initiation of protein synthesis in Saccharomyces cerevisiae. Mol. Cell. Biol. 11:3203–3216.
  • Folley, L. S., and T. D. Fox. 1994. Reduced dosage of genes encoding ribosomal protein S18 suppresses a mitochondrial initiation codon mutation in Saccharomyces cerevisiae. Genetics 137:369–379.
  • Gallwitz, D., C. Donath, and C. Sander. 1983. A yeast gene encoding a protein homologous to the human c-has/bas proto-oncogene product. Nature (London) 306:704–707.
  • Gourse, R. L., R. A. Sharrock, and M. Nomura. 1986. Control of ribosome synthesis in Escherichia coli, p. 766–788. In B. A. K. Hardesty, and G. Kramer (ed.), Structure, function and genetics of ribosomes. Springer-Verlag, New York.
  • Gourse, R. L., D. L. Thurlow, S. A. Gerbi, and R. A. Zimmermann. 1981. Specific binding of a prokaryotic ribosomal protein to a eukaryotic ribosomal RNA: implications for evolution and autoregulation. Proc. Natl. Acad. Sci. USA 78:2722–2726.
  • Hamil, K. G., H. G. Nam, and H. M. Fried. 1988. Constitutive expression of yeast ribosomal protein gene TCM1 is promoted by uncommon cis- and trans-acting proteins. Mol. Cell. Biol. 8:4328–4341.
  • Hamilton, R., C. K. Watanabe, and H. A. de Boer. 1987. Compilation and comparison of the sequence context around the AUG start codon in Sac-charomyces cerevisiae mRNAs. Nucleic Acids Res. 15:3581–3593.
  • Hanahan, D., and M. Meselson. 1980. A protocol for high density screening of plasmids in x1776. Gene 10:63.
  • Helser, T. L., R. A. Baan, and A. E. Dahlberg. 1981. Characterization of a 40S ribosomal subunit complex in polyribosomes of Saccharomyces cerevisiae treated with cycloheximide. Mol. Cell. Biol. 1:51–57.
  • Hill, J. E., A. M. Myers, T. J. Koerner, and A. Tzagoloff. 1986. Yeast/E. coli shuttle vectors with multiple unique restriction sites. Yeast 2:163–167.
  • Itoh, T. 1988. Complete nucleotide sequence of the ribosomal ‘A’ protein operon for the archaebacterium, Halobacterium halobium. Eur. J. Biochem. 176:297–303.
  • Jackson, R. J., and N. Standart. 1990. Do the poly(A) tail and 39 untranslated region control mRNA translation? Cell 62:15–24.
  • Kozak, M. 1983. Comparison of initiation of protein synthesis in procaryotes, eucaryotes, and organelles. Microbiol. Rev. 47:1–45.
  • Lacroute, F. Unpublished results.
  • Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227:680–685.
  • Langford, C. J., F. J. Klinz, C. Donath, and D. Gallwitz. 1984. Point mutations identify the conserved, intron-contained TACTAAC box as an essential sequence in yeast. Cell 36:645–653.
  • Lee, J. C. 1991. Ribosomes, p. 489–540. In A. H. Rose, and J. S. Harrisson (ed.), The yeasts, vol. 4. Academic Press, New York.
  • Liao, D., and P. P. Dennis. 1994. Molecular phylogenies based on ribosomal protein L11, L1, L10 and L12 sequences. J. Mol. Evol. 38:405–419.
  • Lucioli, A., C. Presutti, S. Ciafrè, E. Caffarelli, P. Fragapane, and I. Bozzoni. 1988. Gene dosage alteration of L2 ribosomal protein genes in Saccharo-myces cerevisiae: effects on ribosome synthesis. Mol. Cell. Biol. 8:4792–4798.
  • Mager, W. H. 1988. Control of ribosomal protein gene expression. Biochim. Biophys. Acta 949:1–15.
  • Marck, C. 1988. ‘DNA Strider’: A ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Res. 16:1829–1836.
  • Minvielle-Sebastia, L., P. J. Preker, and W. Keller. 1994. RNA14 and RNA15 proteins as components of a yeast pre-mRNA 39-end processing factor. Science 266:1702–1705.
  • Minvielle-Sebastia, L., B. Winsor, N. Bonneaud, and F. Lacroute. 1991. Mutations in the yeast RNA14 and RNA15 genes result in an abnormal mRNA decay rate: sequence analysis reveals an RNA-binding domain in the RNA15 protein. Mol. Cell. Biol. 11:3075–3087.
  • Moritz, M., B. A. Pulaski, and J. L. Woolford, Jr. 1991. Assembly of 60S ribosomal subunits is perturbed in temperature-sensitive yeast mutants defective in ribosomal protein L16. Mol. Cell. Biol. 11:5681–5692.
  • Nasmyth, K., and S. Reed. 1980. Isolation of genes by complementation in yeast: molecular cloning of a cell-cycle gene. Proc. Natl. Acad. Sci. USA 77:2119–2123.
  • Paulovich, A. G., J. R. Thompson, J. C. Larkin, Z. Li, and J. L. Woolford, Jr. 1993. Molecular genetics of cryptopleurine resistance in Saccharomyces cer-evisiae: expression of a ribosomal protein gene family. Genetics 135:719–730.
  • Pearson, W. R., and D. J. Lipman. 1988. Improved tools for biological sequence comparison. Proc. Natl. Acad. Sci. USA 85:2444–2448.
  • Petersen, N. S., and C. S. McLaughlin. 1974. Polysome metabolism in protein synthesis mutants of yeast. Mol. Gen. Genet. 120:180–200.
  • Petitjean, A., L. Minvielle-Sebastia, E. Mandart, N. Bonneaud, and F. Lacroute. 1993. RNA14 and RNA15, two proteins regulating mRNA stability in Saccharomyces cerevisiae, p. 11–18. In A. J. P. Brown, M. F. Tuite, and J. E. G. McCarthy (ed.), Protein synthesis and targeting in yeast, vol. H71. Springer-Verlag, Berlin.
  • Planta, R. J., W. H. Mager, R. J. Leer, L. P. Woudt, H. A. Raué, and T. T. A. El-Baradi. 1986. Structure and expression of ribosomal protein genes in yeast, p. 699–718. In B. A. K. Hardesty, and G. Kramer (ed.), Structure, function and genetics of ribosomes. Springer-Verlag, New York.
  • Post, L. E., G. D. Strycharz, M. Nomura, H. Lewis, and P. P. Dennis. 1979. Nucleotide sequence of the ribosomal protein gene cluster adjacent to the gene for RNA polymerase subunit β in Escherichia coli. Proc. Natl. Acad. Sci. USA 76:1697–1701.
  • Presutti, C., S. Ciafrè, and I. Bozzoni. 1991. The ribosomal protein L2 in S. cerevisiae controls the level of accumulation of its own mRNA. EMBO J. 10:2215–2221.
  • Raué, H. A., and R. J. Planta. 1991. Ribosome biogenesis in yeast. Prog. Nucleic Acids Res. Mol. Biol. 41:89–129.
  • Rotenberg, M. O., M. Moritz, and J. L. Woolford, Jr. 1988. Depletion of Saccharomyces cerevisiae ribosomal protein L16 causes a decrease in 60S ribosomal subunits and formation of half-mer polyribosomes. Genes Dev. 2:160–172.
  • Rotenberg, M. O., and J. L. Woolford, Jr. 1986. Tripartite upstream promoter element essential for expression of Saccharomyces cerevisiae ribosomal protein genes. Mol. Cell. Biol. 6:674–687.
  • Rothstein, R. J. 1983. One-step gene disruption in yeast. Methods Enzymol. 101:202–211.
  • Sachs, A. 1990. The role of poly(A) in the translation and stability of mRNA. Curr. Opin. Cell Biol. 2:1092–1098.
  • Sachs, A. B., and R. W. Davis. 1989. The poly(A) binding protein is required for poly(A) shortening and 60S ribosomal subunit-dependent translation initiation. Cell 58:857–867.
  • Sambrook, J., E. F. Fritsch, and T. Maniatis. 1989. Molecular cloning: a laboratory manual, 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Sander, G. 1983. Ribosomal protein L1 from Escherichia coli. J. Biol. Chem. 258:10098–10103.
  • Sanger, F., S. Nicklen, and A. R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.
  • Schuler, G. D., S. F. Altschul, and D. J. Lipman. 1991. A workbench for multiple alignment constructions and analysis. Proteins Struct. Funct. Genet. 9:180–190.
  • Sharp, M. S., and E. Cowe. 1991. Synonymous codon usage in Saccharomyces cerevisiae. Yeast 7:657–678.
  • Sharp, P. M., and W.-H. Li. 1987. The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res. 15:1281–1295.
  • Sherman, F., G. R. Fink, and J. B. Hicks. 1986. Laboratory course manual for methods in yeast genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Stettler, S., N. Chiannilkuchai, S. Hermann-Le Denmat, D. Lalo, F. Lacroute, and P. Thuriaux. 1993. A general suppressor of RNA polymerase I, II, and III mutations in Saccharomyces cerevisiae. Mol. Gen. Genet. 239:169–176.
  • Struhl, K. 1987. Promoter, activator proteins, and the mechanism of transcriptional initiation in yeast. Cell 49:295–297.
  • Subramanian, A. R., and E. R. Dabbs. 1980. Functional studies on ribosomes lacking protein L1 from mutant Escherichia coli. Eur. J. Biochem. 112:425–430.
  • Takakura, H., S. Tsunasawa, M. Miyagi, and J. R. Warner. 1992. NH2-terminal acetylation of ribosomal proteins of Saccharomyces cerevisiae. J. Biol. Chem. 267:5442–5445.
  • Vignais, M. L., L. P. Woudt, M. Wassenaar, W. H. Mager, A. Sentenac, and R. J. Planta. 1987. Specific binding of TUF factor to upstream activation sites of yeast ribosomal protein genes. EMBO J. 6:1451–1457.
  • Vincent, A., and S. W. Liebman. 1992. The yeast omnipotent suppressor SUP46 encodes a ribosomal protein which is a functional and structural homolog of the Escherichia coli S4 ram protein. Genetics 132:375–386.
  • Warner, J. R. 1989. Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol. Rev. 53:256–271.
  • Warner, J. R., and C. Gorenstein. 1978. The ribosomal proteins of Saccha-romyces cerevisiae. Methods Cell Biol. 20:45–60.
  • Wittmann-Liebold, B. 1986. Ribosomal proteins: their structure and evolution, p. 326–361. In B. A. K. Hardesty, and G. Kramer (ed.), Structure, function and genetics of ribosomes. Springer-Verlag, New York.
  • Wool, I. G., Y. Endo, Y.-L. Chan, and A. Glück. 1990. Structure, function, and evolution of mammalian ribosomes, p. 203–214. In W. E. Hill, A. Dahlberg, R. A. Garrett, P. B. Moore, D. Schlessinger, and J. R. Warner (ed.), The ribosome—structure, function, & evolution. American Society for Microbiology, Washington, D.C.
  • Woolford, J. L., Jr. 1991. The structure and biogenesis of yeast ribosomes. Adv. Genet. 29:63–118.
  • Woolford, J. L., Jr., and J. R. Warner. 1991. The ribosome and its synthesis, p. 587–626. In J. R. Broach, J. R. Pringle, and E. W. Jones (ed.), The molecular and cellular biology of the yeast Saccharomyces, vol. 1. Cold Spring Harbor Press, Cold Spring Harbor, N.Y.
  • Yanisch-Perron, C., J. Vieira, and J. Messing. 1985. Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119.
  • Zimmermann, R. A., D. L. Thurlow, R. S. Finn, T. L. Marsh, and L. K. Ferrett. 1980. Conservation of specific protein-RNA interactions in ribo-some evolution, p. 569–584. In S. Osawa, H. Ozeki, H. Uchida, and T. Yura (ed.), Genetics and evolution of RNA polymerase, tRNA and ribosomes. University of Tokyo Press, Tokyo.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.