3
Views
25
CrossRef citations to date
0
Altmetric
Research Article

Isolation and Analysis of the Yeast TEA1 Gene, Which Encodes a Zinc Cluster Ty Enhancer-Binding Protein

&
Pages 347-358 | Received 03 Jul 1995, Accepted 10 Oct 1995, Published online: 29 Mar 2023

REFERENCES

  • Axelrod, J. D., J. Majors, and M. C. Brandriss. 1991. Proline-independent binding of PUT3 transcriptional activator protein detected by footprinting in vivo. Mol. Cell. Biol. 11:564–567.
  • Boeke, J. D., and S. B. Sandmeyer. 1991. Yeast transposable elements, p. 193–261. In J. R. Broach, J. R. Pringle, and E. W. Jones (ed.), The molecular and cellular biology of the yeast Saccharomyces, vol. 1. Genome dynamics, protein synthesis and energetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Burger, G., J. Strauss, C. Scazzocchio, and B. F. Lang. 1991. nirA, the pathway-specific regulatory gene of nitrate assimilation in Aspergillus nidulans, encodes a putative GAL4-type zinc finger protein and contains four introns in highly conserved regions. Mol. Cell. Biol. 11:5746–5755.
  • Ciriacy, M., and V. M. Williamson. 1981. Analysis of mutations affecting Ty-mediated gene expression in Saccharomyces cerevisiae. Mol. Gen. Genet. 182:159–163.
  • Clare, J., M. Belcourt, and P. Farabaugh. 1988. Efficient translational frame-shifting occurs within a conserved sequence of the overlap between the two genes of a yeast Ty1 transposon. Proc. Natl. Acad. Sci. USA 85:6816–6820.
  • Clark-Adams, C. D., D. Norris, M. A. Osley, J. S. Fassler, and F. Winston. 1988. Changes in histone gene dosage alter transcription in yeast. Genes Dev. 2:150–159.
  • Company, M., C. Adler, and B. Errede. 1988. Identification of a Ty1 regulatory sequence responsive to STE7 and STE12. Mol. Cell. Biol. 8:2545–2554.
  • Company, M., and B. Errede. 1987. Cell-type dependent gene activation by yeast transposon Ty1 involves multiple regulatory determinants. Mol. Cell. Biol. 7:3205–3211.
  • Company, M., and B. Errede. 1988. A Ty1 cell-type-specific regulatory sequence is a recognition element for a constitutive binding factor. Mol. Cell. Biol. 8:5299–5309.
  • Cook, W. J., S. P. Mosley, D. C. Audino, D. L. Mullaney, A. Rovelli, G. Stewart, and C. L. Denis. 1994. Mutations in the zinc finger region of the yeast regulatory protein ADR1 affect both DNA binding and transcriptional activation. J. Biol. Chem. 269:9374–9379.
  • Dubois, E., E. Jacobs, and J.-C. Jauniaux. 1982. Expression of the ROAM mutations in Saccharomyces cerevisiae: involvement of trans-acting regulator elements and relation with Ty1 transcription. EMBO J. 1:1133–1139.
  • Elder, R. T., T. P. St. John, D. T. Stinchcomb, and R. W. Davis. 1981. Studies on the transposable element Ty1 of yeast. I. RNA homologous to Ty1. Cold Spring Harbor Symp. Quant. Biol. 45:581–584.
  • Errede, B. 1993.. MCM1 binds to a transcriptional control element in Ty1. Mol. Cell. Biol. 13:57–62.
  • Errede, B., M. Company, J. D. Ferschak, C. A. Hutchison, and W. S. Yarnell. 1985. Activation regions in a yeast transposon have homology to mating type control sequences and to mammalian enhancers. Proc. Natl. Acad. Sci. USA 82:5423–5427.
  • Errede, B., M. Company, and C. A. Hutchison III. 1987. Ty1 sequence with enhancer and mating-type-dependent regulatory activities. Mol. Cell. Biol. 7:258–265.
  • Fantino, E., D. Marguet, and G. J.-M. Lauguin. 1992. Downstream activating sequence within the coding region of a yeast gene: specific binding in vitro of RAP1 protein. Mol. Gen. Genet. 236:65–75.
  • Farabaugh, P. Personal communication.
  • Farabaugh, P. J., A. Vimaladithan, S. Turkel, R. Johnson, and H. Zhao. 1993. Three downstream sites repress transcription of a Ty2 retrotransposon in Saccharomyces cerevisiae. Mol. Cell. Biol. 13:2081–2090.
  • Fassler, J. S., and F. Winston. 1988. Isolation and analysis of a novel class of suppressor of Ty insertion mutations in Saccharomyces cerevisiae. Genetics 118:203–212.
  • Fassler, J. S., and F. Winston. 1989. The Saccharomyces cerevisiae SPT13/ GAL11 gene has both positive and negative regulatory roles in transcription. Mol. Cell. Biol. 12:5602–5609.
  • Feinberg, A. P., and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction fragments to high specific activity. Anal. Biochem. 132:6–13.
  • Feinberg, A. P., and B. Vogelstein. 1984. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity (addendum). Anal. Biochem. 137:266–267.
  • Frangioni, J. V., and B. G. Neel. 1993. Solubilization and purification of enzymatically active glutathione S-transferase (pGEX) fusion proteins. Anal. Biochem. 210:179–187.
  • Fulton, A. M., P. D. Rathjen, S. M. Kingsman, and A. J. Kingsman. 1988. Upstream and downstream transcriptional control signals in the yeast retrotransposon, TY. Nucleic Acids Res. 16:5439–5459.
  • Genetics Computer Group. 1994. Program manual for the Wisconsin GCG package, version 8.0. University of Wisconsin, Madison.
  • Gerring, S. L., C. Connelly, and P. Hieter. 1991. Positional mapping of genes by chromosome blotting and chromosome fragmentation. Methods Enzymol. 194:57–77.
  • Giniger, C., S. M. Varnum, and M. Ptashne. 1985. Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40:767–774.
  • Gray, W., and J. S. Fassler. 1993. Role of Saccharomyces cerevisiae Rap1 protein in Ty1 and Ty1-mediated transcription. Gene Expr. 3:237–251.
  • Guan, K., and J. E. Dixon. 1991. Eukaryotic proteins expressed in E. coli: an improved thrombin cleavage and purification procedure of fusion proteins with glutathione S-transferase. Anal. Biochem. 192:262–267.
  • Guarente, L. 1992. Mechanism and regulation of transcriptional activation in eukaryotes: conserved features from yeasts to humans, p. 1007–1038. In S. L. McKnight and K. R. Yamamoto (ed.), Transcriptional regulation, vol. 2. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Guarente, L. 1992. Messenger RNA transcription and its control in Saccha-romyces cerevisiae, p. 49–98. In E. Jones, J. Pringle, and J. Broach.   (ed.), The molecular and cellular biology of the yeast Saccharomyces, vol. II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Guarente, L., and E. Hoar. 1984. Upstream activation sites of the CYC1 gene of Saccharomyces cerevisiae are active when inverted but not when placed downstream of the TATA box. Proc. Natl. Acad. Sci. USA 81:7860–7864.
  • Guarente, L., and M. Ptashne. 1981. Fusion of Escherichia coli lacZ to the cytochrome C gene of Saccharomyces cerevisiae.. Proc. Natl. Acad. Sci. USA 78:2199–2203.
  • Hahn, S., E. T. Hoar, and L. Guarente. 1985. Each of three ‘‘TATA elements’’ specifies a subset of the transcription initiation sites of the CYC1 promoter of Saccharomyces cerevisiae.. Proc. Natl. Acad. Sci. USA 82:8562–8566.
  • Happel, A. M., M. S. Swanson, and F. Winston. 1991. The SNF2, SNF5 and SNF6 genes are required for Ty transcription in Saccharomyces cerevisiae. Genetics 128:69–77.
  • Ito, H., Y. Fukuda, K. Murata, and A. Kimura. 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153:163–168.
  • Kim, K. S., and L. Guarente. 1989. Mutations that alter transcriptional activation but not DNA binding in the zinc finger of yeast activator HAP1. Nature (London) 342:200–203.
  • Kunkel, T. A., J. D. Roberts, and R. A. Zakour. 1987. Rapid and efficient site-specific mutagenesis without phenotypic selection. Methods Enzymol. 154:367–382.
  • Landschulz, W. H., P. F. Johnson, and S. L. McKnight. 1988. The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764.
  • Larson, G. P., K. Itakura, H. Ito, and J. J. Rossi. 1983. Saccharomyces cerevisiae actin-Escherichia coli lacZ gene fusions: synthetic oligonucleotide-mediated deletion of the 309 base pair intervening sequences in the actin gene. Gene 22:31–39.
  • Lawrence, C. W., 1991. Classical mutagenesis techniques. Methods Enzymol. 194:273–281.
  • Liao, X.-B., J. J. Clare, and P. J. Farabaugh. 1987. The upstream activation site of a Ty2 element of yeast is necessary but not sufficient to promote maximal transcription of the element. Proc. Natl. Acad. Sci. USA 84:8520–8524.
  • Lohning, C, and M. Ciriacy. 1994. The TYE7 gene of Saccharomyces cerevisiae encodes a putative bHLH-LZ transcription factor required for Ty1-mediated gene expression. Yeast 10:1329–1339.
  • Ma, J., and M. Ptashne. 1987. Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853.
  • Ma, J., and M. Ptashne. 1987. A new class of yeast transcriptional activators. Cell 51:113–119.
  • Marczak, J. E., and M. C. Brandriss. 1991. Analysis of constitutive and noninducible mutations of the PUT3 transcriptional activator. Mol. Cell. Biol. 11:2609–2619.
  • Marmorstein, R., M. Carey, M. Ptashne, and S. C. Harrison. 1992. DNA recognition by GAL4: structure of a protein-DNA complex. Nature (London) 356:408–414.
  • Marmorstein, R., and S. C. Harrison. 1994. Crystal structure of a PPR1-DNA complex: DNA recognition by proteins containing a Zn2Cys6 binuclear cluster. Genes Dev. 8:2504–2512.
  • Maxam, A., and W. Gilbert. 1980. Sequencing end-labeled DNA with base-specific chemical cleavages. Methods Enzymol. 65:499–560.
  • Mellor, J., M. J. Dobson, A. J. Kingsman, and S. M. Kingsman. 1987. A transcriptional activator is located in the coding region of the yeast PGK gene. Nucleic Acids Res. 15:6243–6259.
  • Miller, J. H., 1972. Experiments in molecular genetics. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Mitchell, D. A., T. Marshall, and R. J. Deschenes. 1993. Vectors for the inducible overexpression of glutathione-S-transferase fusion proteins in yeast. Yeast 9:715–723.
  • Pan, T., and J. E. Coleman. 1990. The DNA binding domain of GAL4 forms a binuclear metal ion complex. Biochemistry 29:2023–2029.
  • Pan, T., and J. E. Coleman. 1990. GAL4 transcription factor is not a zinc finger but forms a Zn(II)2Cys6 binuclear cluster. Proc. Natl. Acad. Sci. USA 87:2077–2081.
  • Purvis, I. J., L. Loughlin, A. J. Bettany, and A. J. P. Brown. 1987. Translation and stability of an Escherichia coli β-galactosidase mRNA expressed under the control of pyruvate kinase sequences in Saccharomyces cerevisiae. Nucleic Acids Res. 15:7963–7974.
  • Reece, R. J., and M. Ptashne. 1993. Determinants of binding site specificity among yeast C6 zinc cluster proteins. Science 261:909–911.
  • Riles, L., J. Dutchik, A. Baktha, B. McCauley, E. C. Thayer, M. P. Leckie, V. Braden, J. E. Depke, and M. V. Olson. 1993. Physical maps of the six smallest chromosomes of Saccharomyces cerevisiae at a resolution of 2.6 kilobase pairs. Genetics 134:81–150.
  • Roy, A., F. Exinger, and R. Losson. 1990. cis- and trans-acting regulatory elements of the yeast URA3 promoter. Mol. Cell. Biol. 10:5257–5270.
  • Ruden, D. M., J. Ma, and M. Ptashne. 1988. No strict alignment is required between a transcriptional activator binding site and the TATA box of a yeast gene. Proc. Natl. Acad. Sci. USA 85:4262–4266.
  • Rymond, B. C., and M. Rosbash. 1992. Yeast pre-mRNA splicing, p. 143–192. In E. Jones, J. Pringle, and J. Broach.   (ed.), The molecular and cellular biology of the yeast Saccharomyces, vol. II. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
  • Schena, M., and K. R. Yamamoto. 1988. Mammalian glucocorticoid receptor derivatives enhance transcription in yeast. Science 241:965–968.
  • Seroude, L., and D. L. Cribbs. 1994. Differential effects of detergents on enzyme and DNA-binding activities of a glutathione S-transferase-homeo-domain fusion protein. Nucleic Acids Res. 22:4356–4357.
  • Sherman, F., G. R. Fink, and C. W. Lawrence. 1978. Methods in yeast genetics, revised ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.
  • Siddiqui, A. H., and M. C. Brandriss. 1989. The Saccharomyces cerevisiae PUT3 activator protein associates with proline specific upstream activator sequences. Mol. Cell. Biol. 9:4706–4712.
  • Sikorski, R. S., and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122:19–27.
  • Simchen, G., F. Winston, C. A. Styles, and G. R. Fink. 1984. Ty-mediated expression of the LYS2 and HIS4 genes of Saccharomyces cerevisiae is controlled by the same SPT genes. Proc. Natl. Acad. Sci. USA 81:2431–2434.
  • Struhl, K. 1984.. Genetic properties and chromatin structure of the yeast GAL regulatory element: an enhancer sequence. Proc. Natl. Acad. Sci. USA 81:7865–7869.
  • Struhl, K. 1989.. Molecular mechanisms of transcriptional regulation in yeast. Annu. Rev. Biochem. 58:1051–1077.
  • Suzuki, Y., Y. Nogi, A. Abe, and T. Fukasawa. 1988. GAL11 protein, an auxiliary transcription activator for genes encoding galactose-metabolizing enzymes in Saccharomyces cerevisiae. Mol. Cell. Biol. 8:4991–4999.
  • Swanson, M. S., and F. Winston. 1992. SPT4, SPT5, and SPT6 interactions: effects on transcription and viability in Saccharomyces cerevisiae. Genetics 132:325–336.
  • Turkel, S., and P. J. Farabaugh. 1993. Interspersion of an unusual GCN4 activation site with a complex transcriptional repression site in Ty2 elements of Saccharomyces cerevisiae. Mol. Cell. Biol. 13:2091–2103.
  • Weiher, H., M. Konig, and P. Gruss. 1983. Multiple point mutations affecting the simian virus 40 enhancer. Science 219:626–631.
  • Winston, F., D. T. Chaleff, B. Valent, and G. R. Fink. 1984. Mutations affecting Ty-mediated expression of the HIS4 gene of Saccharomyces cerevisiae. Genetics 197:179–197.
  • Winston, F., C. Dollard, E. A. Malone, J. Clare, J. Kapakos, F. P., and P. Minehart. 1987. Three genes are required for trans-activation of Ty transcription in yeast. Genetics 115:649–656.
  • Yu, G., and J. S. Fassler. 1993. SPT13/GAL11 of Saccharomyces cerevisiae negatively regulates activity of the MCM1 transcription factor in Ty1 elements. Mol. Cell. Biol. 13:63–71.
  • Yu, K., and R. T. Elder. 1989. A region internal to the coding sequences is essential for transcription of the yeast Ty-D15 element. Mol. Cell. Biol. 9:3667–3678.
  • Zasloff, M., G. D. Ginder, and G. Felsenfeld. 1978. A new method for the purification and identification of covalently closed circular DNA molecules. Nucleic Acids Res. 5:1139–1152.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.