2
Views
74
CrossRef citations to date
0
Altmetric
Research Article

Quantitative Discrimination of MEF2 Sites

Pages 437-441 | Received 29 Jun 1995, Accepted 26 Oct 1995, Published online: 29 Mar 2023

REFERENCES

  • Adolph, E. A., A. Subramaniam, P. Cserjesi, E. N. Olson, and J. Robbins. 1993. Role of myocyte-specific enhancer-binding factor (MEF-2) in transcriptional regulation of the alpha-cardiac myosin heavy chain gene. J. Biol. Chem. 268:5349–5352.
  • Andres, V., B. Nadal-Ginard, and V. Mahdavi. 1992. Clox, a mammalian homeobox gene related to Drosophila cut, encodes DNA-binding regulatory proteins differentially expressed during development. Development (Cambridge) 116:321–334.
  • Berg, O. G., and P. H. von Hippel. 1988. Selection of DNA binding sites by regulatory proteins. Trends Biochem. Sci. 13:207–211.
  • Black, B. L., J. F. Martin, and E. N. Olson. 1995. The mouse MRF4 promoter is trans-activated directly and indirectly by muscle-specific transcription factors. J. Biol. Chem. 270:2889–2892.
  • Breitbart, R. E., C.-S. Liang, L. B. Smoot, D. A. Laheru, V. Mahdavi, and B. Nadal-Ginard. 1993. A fourth human MEF2 transcription factor, hMEF2D, is an early marker of the myogenic lineage. Development (Cambridge) 118:1095–1106.
  • Chambers, A. E., S. Kotecha, N. Towers, and T. J. Mohun. 1992. Muscle-specific expression of SRF-related genes in the early embryo of Xenopus laevis. EMBO J. 11:4981–4991.
  • Claverie, J. M., and D. J. States. 1993. Information enhancement methods for large scale sequence analysis. Comput. Chem. 17:191–201.
  • Cserjesi, P., B. Lilly, L. Bryson, Y. Wang, D. A. Sassoon, and E. N. Olson. 1992. MHox: a mesodermally restricted homeodomain protein that binds an essential site in the muscle creatine kinase enhancer. Development (Cambridge) 115:1087–1101.
  • Cserjesi, P., B. Lilly, C. Hinkley, M. Perry, and E. N. Olson. 1994. Home-odomain protein MHox and MADS protein myocyte enhancer-binding factor-2 converge on a common element in the muscle creatine kinase enhancer. J. Biol. Chem. 269:16740–16745.
  • Cserjesi, P., and E. N. Olson. 1991. Myogenin induces the myocyte-specific enhancer binding factor MEF-2 independently of other muscle-specific gene products. Mol. Cell. Biol. 11:4854–4862.
  • Edmondson, D. G., T.-C. Cheng, P. Cserjesi, T. Chakraborty, and E. N. Olson. 1992. Analysis of the myogenin promoter reveals an indirect pathway for positive autoregulation mediated by the muscle-specific enhancer factor MEF-2. Mol. Cell. Biol. 12:3665–3677.
  • Fickett, J. W., The gene identification problem: an overview for developers. Comput. Chem., in press.
  • Fickett, J. W., Computational gene identification: under the hood. In H. O. Villar (ed.), Advances in computational biology, in press. JAI Press, Greenwich, Conn.
  • Fondrat, C., and A. Kalogeropoulos. 1994. Approaching the function of new genes by detection of their potential upstream activation sequences in Saccha-romyces cerevisiae: application to chromosome III. Curr. Genet. 25:396–406.
  • Geman, S., and D. Geman. 1984. Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. 6:721–741.
  • Gossett, L. A., D. J. Kelvin, E. A. Sternberg, and E. N. Olson. 1989. A new myocyte-specific enhancer-binding factor that recognizes a conserved element associated with multiple muscle-specific genes. Mol. Cell. Biol. 9:5022–5033.
  • Grayson, J., R. S. Williams, Y.-T. Yu, and R. Bassel-Duby. 1995. Synergistic interactions between heterologous upstream activation elements and specific TATA sequences in a muscle-specific promoter. Mol. Cell. Biol. 15:1870–1878.
  • Han, T.-H., and R. Prywes. 1995. Regulatory role of MEF2D in serum induction of the c-jun promoter. Mol. Cell. Biol. 15:2907–2915.
  • Hidaka, K., I. Yamamoto, Y. Arai, and T. Mukai. 1993. The MEF-3 motif is required for MEF-2-mediated skeletal muscle-specific induction of the rat aldolase A gene. Mol. Cell. Biol. 13:6469–6478.
  • Horlick, R. A., and P. A. Benfield. 1989. The upstream muscle-specific enhancer of the rat muscle creatine kinase gene is composed of multiple elements. Mol. Cell. Biol. 9:2396–2413.
  • Jurka, J., J. Walichiewicz, and A. Milosavljevic. 1992. Prototypic sequences for human repetitive DNA. J. Mol. Evol. 35:286–291.
  • Kaushal, S., J. W. Schneider, B. Nadal-Ginard, and V. Mahdavi. 1994. Activation of the myogenic lineage by MEF2A, a factor that induces and cooperates with MyoD. Science 266:1236–1240.
  • Komuro, I., M. Schalling, L. Jahn, R. Bodmer, N. A. Jenkins, N. G. Copeland, and S. Izumo. 1993. Gtx: a novel murine homeobox-containing gene, expressed specifically in glial cells of the brain and germ cells of testis, has a transcriptional repressor activity in vitro for a serum-inducible promoter. EMBO J. 12:1387–1401.
  • Lawrence, C. E., S. F. Altschul, M. S. Boguski, J. S. Liu, A. Neuwald, and J. C. Wootton. 1993. Detecting subtle sequence signals: a Gibbs sampling strategy for multiple alignment. Science 262:208–214.
  • Leifer, D., D. Krainc, Y.-T. Yu, J. McDermott, R. E. Breitbart, J. Heng, R. L. Neve, B. Kosofsky, B. Nadal-Ginard, and S. A. Lipton. 1993. MEF2C, a MADS/MEF2-family transcription factor expressed in a laminar distribution in cerebral cortex. Proc. Natl. Acad. Sci. USA 90:1546–1550.
  • Li, H., and Y. Capetanaki. 1994. An E box in the desmin promoter cooperates with the E box and MEF-2 sites of a distal enhancer to direct muscle-specific transcription. EMBO J. 13:3580–3589.
  • Li, Z., and D. Paulin. 1993. Different factors interact with myoblast-specific and myotube-specific enhancer regions of the human desmin gene. J. Biol. Chem. 268:10403–10415.
  • Lilly, B., B. Zhao, G. Ranganayakulu, B. M. Paterson, R. A. Schulz, and E. N. Olson. 1995. Requirement of MADS domain transcription factor D-MEF2 for muscle formation in Drosophila. Science 267:688–693.
  • Liu, M. L., A. L. Olson, N. P. Edgington, W. S. Moye-Rowley, and J. E. Pessin. 1994. Myocyte enhancer factor 2 (MEF2) binding site is essential for C2C12 myotube-specific expression of the rat GLUT4/muscle-adipose facilitative glucose transporter gene. J. Biol. Chem. 269:28514–28521.
  • Martin, J. F., J. M. Miano, C. M. Hustad, N. G. Copeland, N. A. Jenkins, and E. N. Olson. 1994. A Mef2 gene that generates a muscle-specific isoform via alternative mRNA splicing. Mol. Cell. Biol. 14:1647–1656.
  • Martin, J. F., J. J. Schwarz, and E. N. Olson. 1993. Myocyte enhancer factor (MEF) 2C: a tissue-restricted member of the MEF-2 family of transcription factors. Proc. Natl. Acad. Sci. USA 90:5282–5286.
  • McDermott, J.C, M. C. Cardoso, Y.-T. Yu, V. Andres, D. Leifer, D. Krainc, S. A. Lipton, and B. Nadal-Ginard. 1993. hMEF2C gene encodes skeletal muscle- and brain-specific transcription factors. Mol. Cell. Biol. 13:2564–2577.
  • Molkentin, J. D., and B. E. Markham. 1993. Myocyte-specific enhancer-binding factor (MEF2) regulates alpha-cardiac myosin heavy chain gene expression in vitro and in vivo. J. Biol. Chem. 268:19512–19520.
  • Molkentin, J. D., and B. E. Markham. 1994. An M-CAT binding factor and an RSRF-related A-rich binding factor positively regulate expression of the a-cardiac myosin heavy-chain gene in vivo.. Mol. Cell. Biol. 14:5056–5065.
  • Naidu, P. S., D. C. Ludolph, R. Q. To, T. J. Hinterberger, and S. F. Konieczny. 1995. Myogenin and MEF2 function synergistically to activate the MRF4 promoter during myogenesis. Mol. Cell. Biol. 15:2707–2718.
  • Nakatsuji, Y., K. Hidaka, S. Tsujino, Y. Yamamoto, T. Mukai, T. Yanagi-hara, T. Kishimito, and S. Sakoda. 1992. A single MEF-2 site is a major positive regulatory element required for transcription of the muscle-specific subunit of the human phosphoglycerate mutase gene in skeletal and cardiac muscle cells. Mol. Cell. Biol. 12:4384–4390.
  • Olson, E. N., and W. H. Klein. 1994. bHLH factors in muscle development: deadlines and commitments, what to leave in and what to leave out. Genes Dev. 8:1–8.
  • Parmacek, M. S., H. S. Ip, F. Jung, T. Shen, J. F. Martin, A. J. Vora, E. N. Olson, and J. M. Leiden. 1994. A novel myogenic regulatory circuit controls slow/cardiac troponin C gene transcription in skeletal muscle. Mol. Cell. Biol. 14:1870–1885.
  • Pollock, R., and R. Treisman. 1990. A sensitive method for the determination of protein-DNA-binding specificities. Nucleic Acids Res. 18:6197–6204.
  • Pollock, R., and R. Treisman. 1991. Human SRF-related proteins: DNA-binding properties and potential regulatory targets. Genes Dev. 5:2327–2341.
  • Rosenthal, N., E. B. Berglund, B. M. Wentworth, M. Donoghue, B. Winter, E. Bober, T. Braun, and H.-H. Arnold. 1990. A highly conserved enhancer downstream of the human MLC1/3 locus is a target for multiple myogenic determination factors. Nucleic Acids Res. 18:6239–6246.
  • Ruiz-Lozano, P., L. de Lecea, C. Buesa, P. P. de la Osa, D.LePage, A. Gualberto, K. Walsh, and G. Pons. 1994. The gene encoding rat phosphoglycerate mutase subunit M: cloning and promoter analysis in skeletal muscle cells. Gene 147:243–248.
  • Shore, P., and A. D. Sharrocks. 1995. The MADS-box family of transcription factors. Eur. J. Biochem. 229:1–13.
  • Stormo, G. D., 1990. Consensus patterns in DNA. Methods Enzymol. 183: 211–220.
  • von Hippel, P. H., 1994. Protein-DNA recognition: new perspectives and underlying themes. Science 263:769–770.
  • Wang, G., H. I. Yeh, and J. J. C. Lin. 1994. Characterization of cis-regulating elements and trans-activating factors of the rat cardiac troponin T gene. J. Biol. Chem. 269:30595–30603.
  • Yu, Y.-T., R. E. Breitbart, L. B. Smoot, Y. Lee, V. Mahdavi, and B. Nadal-Ginard. 1992. Human myocyte-specific enhancer factor 2 comprises a group of tissue-restricted MADS box transcription factors. Genes Dev. 6:1783–1798.
  • Zhu, H., V. T. B. Nguyen, A. B. Brown, A. Pourhosseini, A. V. Garcia, M. van Bilsen, and K. R. Chien. 1993. A novel, tissue-restricted zinc finger protein (HF-1b) binds to the cardiac regulatory element (HF-1b/MEF2) in the rat myosin light-chain 2 gene. Mol. Cell. Biol. 13:4432–4444.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.