4
Views
37
CrossRef citations to date
0
Altmetric
Research Article

Increased Expression of the Ras Suppressor Rsu-1 Enhances Erk-2 Activation and Inhibits Jun Kinase Activation

&
Pages 5466-5476 | Received 08 Feb 1996, Accepted 03 Jul 1996, Published online: 29 Mar 2023

REFERENCES

  • Adler, V., M. Pincus, P. W. Brandt-Rauf, and Z. Ronai. 1995. Complexes of p21 Ras with Jun N-terminal kinase and Jun proteins. Proc. Natl. Acad. Sci. USA 92: 10585–10589.
  • Brtva, T., J. Drugan, S. Ghosh, R. Terrell, S. Campbell-Burke, R. Bell, and C. Der. 1995. Two distinct Raf domains mediate interaction with Ras. J. Cell Biol. 270: 9809–9812.
  • Chardin, P., J. Camonis, N. Gale, L. VanAelst, J. Schlessinger, M. Wigler, and D. Bar-Sagi. 1993. Human Sosl: a guanine nucleotide exchange factor for Ras that binds to Grb2. Science 260: 1338–1343.
  • Cheng, J.-C., A. Frackleton, E. Bearer, P. Kumar, B. Kannan, A. Santos-Moore, A. Rifai, J. Settleman, and J. Clark. 1995. Changes in tyrosine-phosphorylated p190 and its association with p120 type I and p100 type II rasGAPs during myelomonocytic differentiation of human leukemic cells. Cell Growth Differ. 6: 139–148.
  • Colicelli, J., J. Field, R. Ballester, N. Chester, D. Young, and M. Wigler. 1990. Mutational mapping of Ras-responsive domains of the Saccharomyces cerevisiae adenylyl cyclase. Mol. Cell. Biol. 10: 2539–2543.
  • Contente, S., K. Kenyon, D. Rimoldi, and R. M. Friedman. 1990. Expression of gene rrg is associated with reversion of NIH 3T3 transformed by LTR-c-H-ras. Science 249: 796–798.
  • Cook, S. J., B. Rubinfeld, I. Albert, and F. McCormick. 1993. RapV12 antagonizes Ras-dependent activation of ERK1 and ERK2 by LPA and EGF in Rat-1 fibroblasts. EMBO J. 12: 3475–3485.
  • Coso, O., M. Chiariello, G. Kalinec, J. Kyriakis, J. Woodgett, and J. Gutkind. 1995. Transforming G protein-coupled receptors potently activate JNK (SAPK). J. Biol. Chem. 270: 5620–5624.
  • Coso, O., M. Chiariello, J.-C. Yu, H. Teramoto, P. Crespo, N. Xu, T. Miki, and J. S. Gutkind. 1995. The small GTP-binding proteins Rac1 and CDC42Hs regulate the activity of the JNK/SAPK signaling pathway. Cell 81: 1137–1146.
  • Cowly, S., H. Paterson, P. Kemp, and C. Marshall. 1994. Activation of Map kinase kinase is necessary and sufficient for PC12 differentiation and for transformation of NIH3T3 cells. Cell 77: 841–852.
  • Cutler, M., R. Bassin, L. Zanoni, and N. Talbot. 1992. Isolation of rsp-1, a novel cDNA capable of suppressing v-ras. Mol. Cell. Biol. 12: 3750–3756.
  • Drugan, J., R. Khosravi-Far, M. White, C. Der, Y. Sung, Y. Hwang, and S. Campbell. 1996. Ras interaction with two distinct binding domains in Raf-1 may be required for Ras transformation. J. Biol. Chem. 271: 233–237.
  • Field, J., H.-P. Xu, T. Michaelli, R. Ballester, P. Sass, M. Wigler, and J. Colicelli. 1990. Mutations of the adenylyl cyclase gene that block ras function in Saccharomyces cerevisiae. Science 247: 464–467.
  • Freed, E., M. Symons, S. MacDonald, F. McCormick, and R. Ruggieri. 1994. Binding of the 14-3-3 proteins to the protein kinase Raf and its effects on its activation. Science 265: 1713–1716.
  • Gluck, U., D. J. Kwiatkowski, and A. Ben-Ze’ev. 1993. Suppression of tumorigenicity in simian virus 40-transformed 3T3 cells transfected with α-actinin DNA. Proc. Natl. Acad. Sci. USA 90: 383–387.
  • Han, L., and J. Colicelli. 1995. A human protein selected for interference with Ras function interacts directly with Ras and competes with Raf-1. Mol. Cell. Biol. 15: 1318–1323.
  • Hill, C., J. Wynne, and R. Treisman. 1995. The Rho family GTPases RhoA, Rael, and CDC42Hs regulate transcriptional activation by SRF. Cell 81: 1159–1170.
  • Irie, K., Y. Gotoh, B. Yashar, B. Errede, E. Nishida, and K. Matsumoto. 1994. Stimulatory effects of yeast and mammalian 14-3-3 proteins on the Raf-1 protein kinase. Science 265: 1716–1719.
  • Khosravi-Far, R., P. Solski, G. Clark, M. Kinch, and C. Der. 1995. Activation of Rae1, RhoA, and mitogen-activated protein kinases is required for Ras transformation. Mol. Cell. Biol. 15: 6443–6453.
  • Kikuchi, A., S. Demo, Z. Ye, Y. Chen, and L. Williams. 1994. Rai GDS family members interact with the effector loop of Ras p21. Mol. Cell. Biol. 14: 7483–7491.
  • Kim, J.-H., F.-E. Johansen, N. Robertson, J. J. Catino, R. Prywes, and C. C. Kumar. 1994. Suppression of Ras transformation by serum response factor. J. Biol. Chem. 269: 13740–13743.
  • Kitayama, H., T. Matsuzaki, Y. Ikawa, and M. Noda. 1990. Genetic analysis of the Kirsten-ras-revertant 1 gene: potentiation of its tumor suppressor activity by specific point mutations. Proc. Natl. Acad. Sci. USA 87: 4284–4288.
  • Kitayama, H., Y. Sugimoto, T. Matsuzaki, Y. Ikawa, and M. Noda. 1989. A ras related gene with tumor suppressor activity. Cell 56: 77–84.
  • Krantz, D. D., Z. R.  , B. L. Kagan, and S. L. Zipursky. 1991. Amphipathic beta structure of a leucine rich repeat peptide. J. Biol. Chem. 266: 16801–16807.
  • Lacal, J. C., T. P. Fleming, B. S. Warren, P. Blumberg, and S. A. Aaronson. 1987. Involvement of functional protein kinase C in the mitogenic response to the Ha-ras oncogene product. Mol. Cell. Biol. 7: 4146–4149.
  • Lebowitz, P., J. Davide, and G. Prendergast. 1995. Evidence that farnesyl-transferase inhibitors suppress Ras transformation by interfering with Rho activity. Mol. Cell. Biol. 15: 6613–6622.
  • McGlade, J., B. Brunkhorst, D. Anderson, G. Mbamalu, J. Settleman, S. Dedhar, M. Rozakis-Adcock, L. B. Chen, and T. Pawson. 1993. The N-terminal region of GAP regulates cytoskeletal structure and cell adhesion. EMBO J. 12: 3073–3081.
  • Minden, A., A. Lin, F.-X. Claret, A. Abo, and M. Karin. 1995. Selective activation of the JNK signaling cascade and c-Jun transcriptional activity by the small GTPases Rac and Rho. Cell 81: 1147–1157.
  • Nobes, C., and A. Hall. 1995. Rho, Rac, and cdc42 GTPases regulate the assembly of multimolecular focal complexes associated with actin stress fibers, lamellipodia, and filopodia. Cell 81: 53–62.
  • Noda, M., H. Kitayama, T. Matsuzaki, Y. Sugimoto, H. Okayama, R. Bassin, and Y. Ikawa. 1989. Detection of genes with a potential for suppressing the transformed phenotype associated with activated ras genes. Proc. Natl. Acad. Sci. USA 86: 162–166.
  • Olson, M., A. Ashworth, and A. Hall. 1995. An essential role for Rho, Rac, and cdc42 GTPases in cell cycle progression through G1. Science 269: 1270–1272.
  • Prasad, G. L., R. A. Fuldner, and H. L. Cooper. 1993. Expression of transduced tropomyosin 1 cDNA suppresses neoplastic growth of cells transformed by the ras oncogene. Proc. Natl. Acad. Sci. USA 90: 7039–7043.
  • Qui, R. G., J. Chen, D. Kirn, F. McCormick, and M. Symons. 1995. An essential role for Rac in Ras transformation. Nature (London) 374: 457–459.
  • Ridley, A., and A. Hall. 1992. The small GTP binding protein Rho regulates the assembly of focal adhesions and actin stress fibers in response to growth factors. Cell 70: 389–399.
  • Ridley, A. J., H. F. Paterson, C. L. Johnston, D. Diekman, and A. Hall. 1992. The small GTP-binding protein Rac regulates growth factor induced membrane ruffling. Cell 70: 401–410.
  • Rubinfeld, B., B. Souza, I. Albert, O. Müller, S. Chamberlain, F. Masiarz, S. Munemitsu, and P. Polakis. 1993. Association of the APC gene product with β-catenin. Science 262: 1731–1734.
  • Settleman, J., C. Albright, L. Foster, and R. Weinberg. 1992. Association between GTPase activators for Rho and Ras families. Nature (London) 359: 153–154.
  • Settleman, J., V. Narasimhan, L. Foster, and R. Weinberg. 1992. Molecular cloning of cDNAs encoding the GAP-associated protein, p190: implications for a signaling pathway from Ras to the nucleus. Cell 69: 539–549.
  • Shumaker, D. K., M. Sklar, E. Prowchownick, and J. Varani. 1994. Increased cell-substrate adhesion accompanies conditional reversion to the normal phenotype in Ras oncogene transformed NIH3T3 cells. Exp. Cell Res. 214: 441–446.
  • Su, L.-K., B. Vogelstein, and K. Kinzler. 1993. Association of the APC tumor suppressor protein with catenins. Science 262: 1734–1737.
  • Thomas, S. M., M. DeMarco, G. D’Arcangelo, S. Halegoua, and J. S. Brugge. 1992. Ras is essential for nerve growth factor- and phorbol ester-induced tyrosine phosphorylation of MAP kinases. Cell 68: 1031–1040.
  • Tikoo, A., M. Varga, V. Ramesh, J. Gusella, and H. Maruta. 1994. An anti-Ras function of neurofibromatosis type 2 gene product (NF2/Merlin). J. Biol. Chem. 269: 23387–23390.
  • Tsuda, T., and M. L. Cutler. 1993. Human RSU-1 is highly homologous to mouse Rsu-1 and localizes to human chromosome 10. Genomics. 18: 461–462.
  • Tsuda, T., M. Marinetti, L. Masuelli, and M. Cutler. 1995. The Ras suppressor RSU-1 localizes to 10pl3 and its expression in the U251 glioblastoma cell line correlates with a decrease in growth rate and tumorigenic potential. Oncogene 11: 397–403.
  • Vojtek, A. B., S. M. Hollenberg, and J. Cooper. 1993. Mammalian Ras interacts directly with the serine/threonine kinase Raf. Cell 74: 205–214.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.